
ZX8I
BASIC BOOK

Robin Norman

Newnes Microcomputer Books

ZX81
Basic Book

ZX81
Basic Book

Robin Norman

Newnes Technical Books

Newnes Technical Books
is an imprint of the Butterworth Group
which has principal offices in
London, Boston, Durban, Singapore, Sydney, Toronto, Wellington

First published 1982
Reprinted 1982

© Butterworth & Co. (Publishers) Ltd, 1982
Borough Green, Sevenoaks, Kent TN15 8PH, England

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and
recording, without the written permission of the copyright holder,
application for which should be addressed to the Publishers. Such
written permission must also be obtained before any part of this
publication is stored in a retrieval system of any nature.

This book is sold subject to the Standard Conditions of Sale of Net
Books and may not be re-sold in the UK below the net price given by
the Publishers in their current price list.

British Library Cataloguing in Publication Data

Norman, Robin
ZX81 Basic Book
1. Sinclair ZX81 (Computers) — Programming
2. Basic (Computer program language)
I. Title
001.64'42 QA76.8.S/

ISBN 0-408 01178 5

Typeset by Tunbridge Wells Typesetting Services Limited
Printed in England by Butler & Tanner Ltd., Frame and London

Preface

It's hard for a mere author to keep up with the microcomputer
industry. In 1980 I wrote a book for new owners of the Sinclair
ZX80, and simultaneously with the publication of that book, the
latest Sinclair offering was announced — the ZX81. ZX80 was an
incredible machine, but it did leave one saying, 'If only it would do
this and this . . Now nearly all these gaps have been well and
truly filled by the Sinclair ZX81, which does nearly everything for
less money!

The reception for our previous book was good enough to
encourage Newnes and myself to press on with a new version for
the ZX81. With so many new features available in ZX81 BASIC, it
was obvious that most of the book would have to be rewritten.
Nevertheless we have used the same layout, and made the same
three assumptions about the reader of the book — who naturally
may be 'she' or 'he':

1 He is a newcomer to computer programming (depending on
experience, he can of course skip early sections of the book).

2 He has one particular microcomputer, the Sinclair ZX81,
switched on, in front of him.

3 He wants to learn to use all the instructions in ZX81 BASIC, using
a structured course with a steadily increasing tempo.

You cannot 'read' a book like this. Whatever you get out of it will be
the result of a three-way interaction between you, this book, and
the ZX81. And if you ever find yourself thinking, 'What would
happen if. . .?', then for goodness sake try it! You won't break the
ZX81 and you'll probably learn something.

A few acknowledgements — first to Betty Clare for typing difficult
manuscripts so well. To Peter Chapman for helpful ideas, and to my
family for still being patient. And finally to Clive Sinclair for lending

the hardware — one has to say that with the ZX81 he has 'done it
again'. A marvellous little machine, admittedly a little low on
memory (that's what the 16K RAM expansion is for), fine for
beginners and yet able to hold its own with many machines costing
much more.
Happy programmingtoyou all! R.N.

Contents

1. What do computers do? 1
2. Talkingto computers 4
3. Programming in BASIC 7
4. The hardware 9
5. Your first program 12
6. Tidy up your programs! 15
7. Sums? No problem! 18
8. Vital variables 22
9. A little punctuation works wonders 26

10. Anyone can make a mistake! 29
11. Strictly functional 32
12. Magic roundabout 36
13. Flowcharts 40
14. Putting in data 42
15. Saving programs and data 45
16. Round and round — just ten times 50
17. Loops within loops 53
18. What a friendly machine! 56
19. Change speed, stop and pause 60
20. Achancybusiness 66
21. Gone out, bizzy, back soon 70
22. Speeding upthe input 73
23. Son of graphics 77
24. Playing with strings 82
25. Ingloriousarray 86
26. Arrays of strings 91
27. Very logical 95
28. Graphics ride again! 99
29. What a memory! 104
30. Debugging your programs 108
Appendix 1. ZX81 Basic in 8K ROM 111
Appendix 2. Glossary ofterms 118
Appendix3. ProgramsfortheZX81 121
Appendix 4. Sample answers to exercises 148
Appendix 5. The 16K RAM Pack 160
Index 163

List of Programs
1. Random rectangles (1K) 122
2. Square spiral (1K) 123
3. Random bar chart (1K) 124
4. Sales chart (1K) 125
5. Moving average (1K) 126
6. Multiples (1K) 127
7. Findingfactorsofnumbers(IK) 128
8. Number base conversion (1K) 130
9. Drawing pictures (1K) 131
9a. and storingthem in an array (16K) 132

10. Cowsand bulls (1K) 133
11. Electronic dice (IK) 134
12. Reaction timer (1K) 135
13. Black box (16K) 137
14. Telephone list (16K) 144

What do Computers Do?

Rather a philosophical chapter, this — come back to it later if you're
in a hurry to get started!

Machines Controlling Machines

Man is in many respects a poor match for other inhabitants of this
planet. We have achieved our dominance on Earth because of our
large brains, and the way in which we have used these to devise
tools. These tools not only save labour, but they also allow us to do
things that would be inconceivable without them.

At some stage in pre-History, we used our flint knife to cut
notches on a stick — now we had two different kinds of tool:

(1) Tools to do mechanical work — helping our muscles.
(2) Tools to calculate and remember — helping our brain.

Luckily, we did not put these two kinds of tool into watertight
compartments. Our best progress has been made since we
combined the two and used the calculating tools to control the
mechanical tools. It's been going on for a long time, as these
examples will suggest.

Simple gauges to check that arrows are of a standard length and
diameter.

Capstan lathes to allow intricate metal working to be done by
unskilled people.

Electronically controlled robots to assemble car bodies with a
minimum of human help.

Of course, it's electronics and the famous 'silicon chip' which has
spread automatic control of machines so widely. They also bring

1

social problems to be solved — how to share out the benefits fairly
among us all — but that's another story.

'Pure' Calculating Machines
Since this group includes the Space Invader machine, I thought it
best to put the word 'pure' in quotes! I use it to mean calculating
machines which are not used for the direct control of any other
machine. We've been using these for a good longtime, for counting
our money and possessions, for advancing our knowledge, and to
amuse ourselves. Here again the silicon chip has brought about a
revolution in reducing the size and price of these machines, until
we can get a pocket calculator with pocket money and a
microcomputer for a birthday present.

Dedicated or open-minded

I want to distinguish two different kinds of electronic calculating
machines:

(1) The dedicated machine which has a detailed set of
instructions built in to make it do one particular job (e.g.
Electronic Mastermind).

(2) The machine with an open mind — we can put in our own
instructions to make it do all sorts of jobs — including playing
a game of Mastermind
(e.g. The Sinclair ZX81).

Even the open-minded machines are dedicated to some extent.
For instance, the ZX81 has a lot of instructions built-in so that it can
understand one particular programming language — BASIC.

Hardware and Software
There's a lot of jargon used in the computer business — it's a
shorthand which helps people on the inside, but forms a barrier to
people on the outside. I'll try to keep it to a minimum, and I'll help
you by including a glossary of new words (and old words with new
meanings) at the end of this book.

Hardware means all the physical parts of the computer — the
ZX81, TV set and cassette recorder.

Software means all the programs and instruction books needed to
make the computer work — the ZX81 operating manual, this book,

2

the permanent programs put into the ZX81 by its designers, and the
programs that you write.

Having gone from the general to the particular, we'll move on to
see how we can communicate with a computer.

3

2__________
Talking to Computers

Computer Languages

Humans have ten fingers, and so have got used to counting in the
decimal system using the digits 0 to 9. Computers, on the other
hand, work with binary numbers. A binary digit (bit for short) can
only have the values 0 or 1, and the computer is just about bright
enough to tell the difference between them!

One can write programs in binary numbers (in the early days of
computers this was the only way), but humans find binary numbers
clumsy to handle and hard to recognise. A better way is to write
programs in a low-level language, using machine code based on
hexadecimal (base 16) numbers, which are easily converted to
binary. Machine code programs are fast to run and economical on
computer memory, but they are no way for beginners to learn
programming. Most people converse with computers in a high-level
language, which uses decimal numbers and sets of recognisable
English words. Some common high-level languages are:

FORTRAN FORmula TRANslation, mainly for science and
engineering

COBOL Commercial Business Oriented Language
BASIC Beginners All-purpose Symbolic Instruction Code

New languages appear from time to time, having various
advantages claimed for them. BASIC is probably the most widely
used language in today's generation of microcomputers.

The computer cannot understand these high-level languages on
its own, and so programs are built in to translate them via machine
code into binary numbers.

4

Computer Memories

The memories of a computer consist of a large number of'boxes' or
'pigeon-holes', each containing an 8-bit binary number (called a
byte). Memory size is specified in terms of K, where 1K is a memory
with a capacity of 1024 bytes. There are two kinds of memory in a
microcomputer like the ZX81:

Read Only Memory (ROM)

This contains the program needed to run the computer and to
translate the BASIC instructions into binary code. ROM is
permanent and so is not lost when the computer is switched off. The
ZX81 uses BASIC in 8K of ROM.

Random Access Memory (RAM)

This contains all the data and programs which you put in. It is not
permanent, and if you switch off for a moment, the RAM contents
are lost. Your ZX81 has 1K of RAM available, but you can increase
this to 16K by plugging in the 16K RAM pack.

Input and Output
We need to be able to put data and instructions into the computer
memory, and the ZX81 provides us with a scaled-down version of a
standard typewriter keyboard for this purpose. We also have to
provide the means for the ZX81 to display its results, and for us to
see what we are typing in — an ordinary UHFTV set is used for this.

If we want a permanent record of a program, or of the ZX81
output, we can use a printer which is connected to the ZX81. ZX81
uses a non-standard character set, and the only suitable printer is
Sinclair's own.

Long Term Storage
We've already seen that when you switch off the ZX81, all the
contents of the RAM are lost — possibly a precious program that
you've taken hours to write! Even if it was recorded on the printer
you would haveto type it out again. We need longterm or back-up
storage, in which to keep our programs and data permanently. ZX81

5

uses a standard tape or cassette recorder, and programs and data
can be saved on tape, kept as long as you like, and then loaded back
into the ZX81.

Looking Into the Future

This is the crystal-ball department, a list of the features I should like
in my own personal computer in the future:

(1) Greater agreement on standards, so that programs become
more interchangeable and computers can talk to each other
more easily.

(2) Communication with the computer by voice, both for input
and output.

(3) Cheap printed output — preferably in the form of an
electronic typewriter which doubles as a printer.

(4) Cheap, unlimited, permanent memory for back-up storage.
(5) High-definition output in colour, comparable with TV

standards.
(6) A large range of cheap software — programs for business,

home, learning and leisure — in simple plug-in form.
(7) Connection to large central computers, probably via the TV

network, to give access to virtually unlimited information on
any chosen subject.

6

3___________
Programming in BASIC

BASIC is one of the most widely used high-level languages,
especially for the present generation of microcomputers. There are
many different versions of BASIC, in the same way as there are
different dialects of English. But do not despair! All versions of
BASIC are easily recognisable as coming from the same original
source (BASIC was developed at Dartmouth College, New
Hampshire, USA), and when you have learnt one form of BASIC
you can quickly transfer to another form on another computer.
Sinclair ZX81 BASIC in 8K ROM is a fairly complete version with a
few non-standard features, and in many ways it is an excellent
BASIC for beginners to learn.

The First Computer Program?

Let's use a light-hearted example for our first look at programming.
Walt Disney's Fantasia is revived from time to time, and one of my
favourite parts is The Sorcerer's Apprentice by Dukas. Mickey
Mouse is the apprentice who is left on his own with the boring job of
filling a great tank with water from the well. Mickey is a bright lad,
and he decides to program one of the kitchen brooms to do the
work, while he has a crafty snooze.

In writing a computer program it's very important to get the
instructions in the right order, and so every one is given a number.
Mickey's first attempt could have been like this:

1 Pick up bucket and go to well
2 Fill bucket with water
3 Carry bucket to water tank
4 Empty bucket into tank

7

So far, so good. One bucketful of water has been shifted! Mickey
could repeat the same instructions over and over again, numbering
them 5, 6, 7, 8 and 9, 10, 11, 12 and so on. Not a bit! He has read
Chapter 12 in the spell book, and all he does is to add one more
instruction:

5 GOTO1

and now he has made a program loop. The broom follows the
program exactly, and goes happily backwards and forwards, filling
and emptying buckets, while Mickey nods off. . .

. . . until he wakes with a start some time later to find water lapping
round his knees. You've guessed it — he forgot to tell the broom
when to stop! Panic — he chops the broom into sixteen pieces, but
each of these gets up and carries on with the work. Luckily the
sorcerer returns home just in time. He is skilled in the arts of
programming brooms, and knows that every loop must include a
'get out' test, or it will go on for ever. This vital step always contains
the magic word 'IF', and we call it a conditional jump.

With its IF statement, and a little renumbering, the final program
looks like this:

1 Pick up bucket and go to well
2 Fill bucket with water
3 Carry bucket to water tank
4 Empty bucket into tank
5 IF water tank is not full THEN GO TO 1
6 Report 'Tank Full'
7 Stop

The IF statement has to be inside the loop, so that every time the
broom goes round the loop, it can check whether the tank is full,
and take action accordingly.

Well, that was childish stuff, but it did raise four points which will
be important when we come to write real programs for the ZX81.

(1) A BASIC program is made up of a series of Instructions.
(2) The instructions are all numbered so that the computer can

carry them out in the order it is told to.
(3) You can make a computer do part of a program over and

over again by using a GO TO instruction. We call this a loop.
(4) A loop must contain a conditional jump, which will stop the

computer or send it out of the loop when the condition is
obeyed. The magic word is 'IF'!

8

4
The Hardware

Before connecting up the hardware and switching on, you had
better consult Chapter 1 in your manual, ZX81 Basic Programming.
The three vital parts are the ZX81 itself, its power supply and a UHF
television set (black and white sets seem to work best). The ZX81
will happily work away without a TV attached, but you need to see
what you are telling it to do, and it needs to tell you what it has
done! Join up the three units as described in your manual. Turn on
the power, switch on and then tune the TV. When correctly tuned
(about 36 on the tuning knob, if numbered) you see a white Kina
black square at the bottom left — we call this the [K] cursor.

The ZX81 Keyboard

It's worth while taking trouble to get used to your ZX81 keyboard —
it's been carefully designed to make each key do as much work as
possible. These are the various items that the keys will produce on
the screen:

(1) The set of keywords
These are the words in small white print above each letter key —

they are the instructions which tell the ZX81 what to do. When the
KI cursor is showing and you press a letter key, you put the
corresponding keyword on the screen — try any one now. I just
pressed Y, which put the keyword RETURN on the screen and
changed the KI cursor to E. Some of you are asking the obvious
question — 'How do I choose between a letter and a keyword?' The
answer is simple — you don't! The ZX81 knows when keywords or
letters are needed, and puts the correct cursor on the screen as
required.

9

It's a help to remember that many keywords are placed above or
near their initial letter, to help you to find them quickly. In this
book, as in your manual, all words produced by a single keystroke
are printed in bold type, for example:

PRINT ABS TO
(2) The set of letters

You can type any letter on the screen (or space or full stop) by
pressing the corresponding key while the [□ cursor is showing. Try
some now, and notice how the E moves ahead of your typing all
the time. The next character you type is always printed at the
current position of the cursor.
(3) The set of numbers

You can type these just like letters, except that numbers are
printed regardless of whether the B or E cursor is showing, and
they don't change the cursor from K to E. Notice the zero, (5,
which must not be confused with letter O. Be careful also with
number 1 and letter I.
(4) The set of upper case characters

If you hold down SHIFT (bottom left of the keyboard) and press
almost any letter or number key, you will print one of a whole
collection of words, punctuation marksand maths symbols, printed
in red on the top part of each key. The exceptions are SHIFT 1 and
SHIFT 5 to 0 which print nothing on the screen — we'll see what
they do later.

Five of the upper case characters (STOP, LPRINT, SLOW, FAST,
LLIST) are keywords for use with the KI cursor, the rest for the E
cursor only.
(5) The set of functions

These are printed in small white letters underneath each letter
key. Hold down SHIFT while the E cursor is showing and press the
key FUNCTION/NEWLINE on the far right. You will see the cursor
change from E to E, and if you now press any letter key (other
than V) you will put the corresponding function on the screen.
Functions are usually needed one at a time, so the cursor
automatically changes back to E-
(6) The set of graphics characters

Press the GRAPHICS key (SHIFT 9) while the E cursor is
showing, and you will see the cursor change to IQ (it will stay like
that until you press GRAPHICS again). Now you can experiment
with a whole lot of special effects.

Press any letter or number key, and you will get its inverse (white
on black), useful for emphasis. Hold down SHIFT, and press one of
the block of 20 keys on the left of the keyboard, and you will get one
of the special black/white/grey graphics blocks. Later on we'll be

10

using these for drawing pictures and graphs. SHIFT with any other
key will give you the inverse of the corresponding upper case
character.

Now we know how to type any of the characters on the screen, so
we can go on to write a program, but first we must clear the screen
of rubbish. A quick way is to press EDIT (SHIFT 1), which empties
the screen, leaving the KI cursor. We get the same effect by
unplugging the power jack plug, but remember for the future that
this loses all the programs and data in the ZX81 — it's a last resort!

We Learnt These in Chapter 4
Setting up the ZX81.
Sets of characters available from the keyboard.

11

5_________
Your First Program

Clearing Out Old Programs

You must get rid of any old programs from theZX81 memory before
you type in a new one. Right, I know there's nothing there, but let's
practise anyway. At the end of the last chapter we set the cursor to
K], so all we have to do is to press key A and the keyword NEW
appears on the screen. Now we need to pass this to the ZX81 for
action, so we press NEWLINE on the far right of the keyboard.
NEW vanishes from the screen — the ZX81 has now obeyed the
command 'clear out any old program and get ready for a new one'
— and K] reappears.

Commands and Statements

'When I use a word', said Humpty Dumpty, 'it means just what I
choose it to mean'. We just used the instructions NEW and
NEWLINE, and I am calling these commands. Commands are not
part of a program, they are orders from outside the program which
are obeyed once and then forgotten. Nearly all the keywords, plus
uppercase EDIT, LPRINT, SLOW, FAST and LLIST, are accepted as
commands by the ZX81. INPUT gives an error, and FOR, NEXT,
PAUSE, SCROLL are not useful.

Statements, on the other hand, are instructions included in
numbered program lines which form part of a program. They are
remembered by the ZX81 and obeyed every time the program is
run. Any keyword (except CONT) can be used as a statement, as
well as upper case STOP, LPRINT, SLOW, FAST, LLIST.

12

Writing a Program

And about time! We saw in Chapter 3 that all BASIC program lines
must be numbered, so type a line number, say '10'. The cursor is
still KI, because the first item after a line number must be a
keyword, so now press key 'P'. You now have:

10 PRINT □

on the screen, so continue by typing:

10 PRINT "RULE 1 IN BASIC □

and then press NEWLINE to enter it into the ZX81 memory. What
happened? Yes, yet another cursor □ appeared! This marks a
syntax error, something wrong with the line which prevents it from
being entered. At the moment it is saying, 'Quotes come in pairs!',
so add the missing quote at the end and press NEWLINE again. This
time your line 10 pops up to the top of the screen, it has gone into
memory, and the K cursor reappears at the bottom, ready for the
next program line.

No more lines for the present, we'll run the program as it stands.
Press 'R' to put the command RUN on the screen, and you know by
now that the next key to press is NEWLINE.

When the cheering has died down, look carefully at what
happened. The words and spaces inside your quotes have all been
printed according to plan, while the line number, cursors and
quotes have been left out — they were there to tell the ZX81 what to
do. What we did in line 10 was to PRINT a literal string on the
screen. Literal strings are enclosed by quotes, and may contain
anything from the keyboard except a SHIFT P quote (use SHIFT Q
fora picture of a quote if you need one). At the bottom of the screen
is 0/10, the ZX81's report code, which is saying 'Program ran
without problems and ended with line 10'. Your numbered
program line is still in memory, where it will stay till you clear it out,
or type NEW, or switch off. You can see it again if you wish by
pressing NEWLINE.

Hidden under the report code is a K cursor, ready for your next
program line. Let's go on to the next chapter and type some more.

We Learnt These in Chapter 5

Commands

NEW to clear out old programs.

13

NEWLINE to pass commands to the ZX81 and to enter
numbered lines into a program.

RUN to make the ZX81 run your programs and carry out the
instructions in them.

Statements

PRINT to print literal strings on the screen.

Anything else

Commands and statements.
The cursors.
Syntax errors.
Report codes.

14

Tidy up Your Programs!

A Second Line

PRINT

Press NEWLINE if necessary to display the current program at the
top of the screen, then type this second line exactly as printed:

20 "EVERY LINE NEEDS A NUMBERS"
Sorry - some bad spelling there! Don't panic, hold down SHIFT
and press RUBOUT twice. You will see the cursor move back
two spaces, rubbing out the quote and the offending S. Now retype
the quote and press NEWLINE, sending line 20) up to join the rest of
the program. Run the program as before, and you'll get this on the
screen:

RULE 1 IN BASIC
EVERY LINE NEEDS A NUMBER

plus the usual report code G)/201.
So far l've carefully printed in the cursor wherever it occurred in a

program line. Now l'll leave it out unless there is a special reason.

Tidying Up

The result will look neater if we put a space between the two lines of
output. Try this -- type:

15 PRINT
and enter it by pressing NEWLINE. What on earth are we trying to
do? PRINT what? Well, run the program and see what happens. It
worked, didn't it! When the ZX81 comes to a PRINT statement it
prints what it is told to. In line 15 it was told to print nothing -
nothing was what it printed!

15

Finally we'll add a comment to say what the program is about.
Type the following:

5 REM ** MY FIRST PROGRAM

The REM statement is saying, 'Ignore the rest of this line, it is only a
programmer's remark'. The ** are simply added to make the REM
lines show up better.

Numbering and Listing

Most computers have to be asked for a list of lines in a program, but
ZX81 gives you a list as soon as you press NEWLINE or when you
add a line to your program. I'm sure you've noticed that the ZX81
has sorted the lines into numerical order, although we typed 10, 20,
15, 5. I expect you have also realised why we left gaps between the
line numbers. Yes, it makes it easy to insert lines later on, as we did
with lines 15 and 5. ZX81 does not care what the line numbers are, it
is only interested in the order. There is a choice of line numbers
from 1 to 9999, so there's no shortage.

Getting Rid of Whole Program Lines

Let's suppose we want to erase line 5 to save memory space — often
the ultimate fate of REM lines. Simply type the line number 5 and
press NEWLINE. Line 5 has gone, just like that! Alternatively you
can completely change a line by typing its line number, then the
new version, and then pressing NEWLINE. You can do this as often
as you like, ZX81 will always delete an old line and replace it with
the new one.

Now for a couple of exercises to practise what we have learnt in
the last two chapters.

Exercise 6.1. Line changing

Delete lines 15 and 20 of the current program, then change line 10
to make the ZX81 print the message:

THREE LINES GONE, ONE LEFT

Exercise 6.2. Your address

Delete the old program with a single keyword (remember which

16

one?). Write a program to print your name and address as though
on an envelope. Just to show it can be done, leave gaps of
between your line numbers.

We Learnt These in Chapter 6

Statements

PRINT to make a line space.
REM for a remark, ignored by the ZX81.

Anything else

RUBOUT to delete characters one at a time in a line you are
writing.

Automatic listing by pressing NEWLINE.
Line numbering with gaps for later additions.
Deleting and changing existing lines.

17

7
Sums? No Problem!

Until now I have been reminding you to press NEWLINE to pass
commands and program lines from the bottom of the screen to the
ZX81. From now on it's up to you!

Keywords in Command Mode

We have used PRINT as a statement in program lines, but we saw in
Chapter 5 that most keywords could also be used as commands. Try
typing:

PRINT “THIS IS A ONE-OFF COMMAND"

The ZX81 obeys the command once, but it is then forgotten and
cannot be obeyed again. The report code 0/0 shows that there was
no line number.

Numbers and Expressions

We can make the ZX81 print numbers in the same way as we have
printed strings, except that quotes must not be used. Try a few like:

PRINT 99 PRINT 3.74
PRINT 0.075 PRINT .625

The full stop doubles as a decimal point, and leading 0s on the left of
the decimal point need not be included.

Expressions consist of numbers and operators, for example 5 + 3.
If we ask the ZX81 to print an expression, it will helpfully work out
the answer and print that. Type in:

PRINT 5 + 3

18

The answer 8 appears at the top of the screen — we have used the
ZX81 like a pocket calculator, but with the advantage that we can
see the whole expression, and if necessary correct it, before it is
worked out.

Operators and Priority

We all remember the four standard maths operators. You will find —
and + easily at SHIFT J and SHIFT K. Instead of x or 'multiplied by'
we use * (SHIFT B), and for -r or 'divided by' we use / (SHIFT V) —
this is standard computer practice. In addition we have ** (SHIFT
H) which means 'raised to the power of':

2**3 = 23 = 2x2x2 = 8

Try typing more simple expressions, each madeof a pair of numbers
with an operator:

PRINT 25-17 PRINT 7-12 PRINT 9*11
PRINT 63/9 PRINT 125/48

Notice that the ZX81 happily copes with negative numbers and
decimals. If you type:

PRINT 2/3 and PRINT 1/3

you will find the answer printed to 8 decimal places, the last place
being rounded up or down as usual.

What happens with longer expressions like:

2 + 3*4?

If we are doing sums like these on paper, we have to follow a
standard order of operations. ZX81 and most computers do the
same.

Highest priority ** (to the power of)
1 * and / (times and divided by)

Lowest priority + and - (plus and minus)

So the expression above is worked out in two stages:

(1) 3*4 =12
(2) 2 +12 = 14 (answer)

Try these expressions, and make up more of your own:

PRINT 7*2-5 PRINT 9-12/6
PRINT 3**3 + 5 PRINT 38-5**2

Make sure you are getting the answers you expect!

19

Using Brackets

If we want to tell the ZX81 to change its priority rules, we can do so
by using brackets. The ZX81 will follow standard mathematical
rules and work out the part of the expression inside brackets first.
Compare these two expressions:

PRINT
(1)
(2)

2 + 3* 4
3x 4=12
2 + 12 = 14

PRINT
(1)
(2)

(2 + 3)
2 + 3
5x4

* 4
= 5
= 20

Check that the ZX81 gives the right answers. You can use as many
brackets as you like, in pairs, either separately or nested inside each
other. When the ZX81 meets nested brackets, it starts with the
expression in the inside pair(s) and then works its way outwards.
Don't hesitate to use extra (unnecessary) pairs of brackets if it makes
an expression easier for you to understand.

Exercise 7.1. Expressions with brackets

Work out the answers to these expressions, then check them with
theZX81.

((7—5)*(30/12))**3
(((6*8)—(23—11))/(5 + 7))**2

Scientific Notation

Type these commands and look carefully at the answers:

PRINT .00007
PRINT 7/10**5
PRINT 7000000000000 (12 0s)
PRINT 7*10**12

and now these:

PRINT .000007
PRINT 7/10**6
PRINT 70000000000000 (13 0s)
PRINT 7*10**13

When numbers get too big or too small, ZX81 prints them in
scientific notation:

7E + 13 is the same as 7* 10**13 or 7x 1013
7E-6 is the same as 7/10**6 or 7/106 or 7x 10-6

20

Many calculators use just the same method to accommodate small
and large numbers.

If we wish, we can use scientific notation for the numbers we pass
to the ZX81. Type:

PRINT 7E-5
PRINT 7E-6

and soon. TheZX81 always changes to normal decimal notation if it
has room.

We Learnt These in Chapter 7
Commands

PRINT to print strings, numbers or the answers to expressions.

Anything Else

Mathematical operators and priority.
Brackets to change priority.
Scientific notation.

21

8
Vital Variables

We have seen how to command the ZX81 to print numbers, or the
answers to expressions, on the screen. We can do the same in a
program, but it is not particularly useful, and we have a far more
powerful statement available, LET.

Defining a Variable with LET

Clear the ZX81 with NEW, and then type this line:

10 LETX = 5
Run it — there's no output apart from the 0/10 'O.K.' message —
what have we done this time? Well, in long-winded English we have
said, 'Label a memory box Xand put 5 in it'. In otherwords we have
defined the variable X as having the value 5.

Now we can do all sorts of things with the contents of X. We can
print it:

20 PRINT X (and RUN)

We can use it in expressions:

30 PRINT 100*X
40 PRINT X**3

Note that, although we have used the contents of box X in lines 20,
30, 40, the 5 is still there. Check this by adding:

50 PRINT X
The original 5 is still there, but we can change it if we wish.

60 LET X = 999
70 PRINT X

22

Line 60 said, 'Throw out the contents of box X and insert 999'. We
can change the value of a variable as often as we like — that's why
it's called a variable.

Naming Variables

The number of variables we can use in a program is limited only by
memory space, but they must all have different names! ZX81 offers
the widest choice of names in town, you just have to follow these
rules:

(1) Variable names must start with a letter, not a number.
(2) Variable names may contain any mixture of letters and

numbers, but not spaces (ignored) or any other characters
(illegal).

We generally use short names to save memory and effort, often
choosing mnemonics (memory joggers) of the contents — T for
total, W for weight, and so on. Try out your own names for
variables, using LET as a command if you wish, and see what
happens when you break the rules above.

More Advanced LET Statements

Our statement has the general form:

LET variable name=. . .

What can we put on the right of the = sign? Here are some
examples, the first we have seen already.

(1) A number:
LET B = 75

(2) An expression using numbers:

LET C = 23*45

(3) An expression using other variables, with or without
numbers:

LET A = C LETV=B**3
Important — you can only put a variable on the right if it has
already been defined. ZX81 refuses to work with variables it
does not know about.

(4) An expression using the same variable as the one on the left:

LETB=B + 10 LET A = A*X

23

Algebra was never like this! Remember that these are not
equations. We are saying things like, 'Take out the contents
of box B, add 10 to it and put this new value back into box B'.

How We Use Variables
If we know the radius (R) of a circle, we can use these well known
equations to work out the diameter (D), circumference (C) and area
(A).

D = 2R
C = nD
A = nR2

(let's take n as 3.14 for now).
We can put all this into a simple program. First we define R, the

radius of the circle in cm:

10 LETR = 5
Next we calculate the three unknowns and use them to define
variables.

20 LETD = 2*R
30 LETC = 3.14*D
40 LET A=R**2*3.14

Finally we can print the results:

50 PRINT R
60 PRINT D
70 PRINT C
80 PRINT A

Run the program and check the results with a pocket calculator. We
can make the results less anonymous by printing titles:

45 PRINT "RADIUS GIVEN = "
55 PRINT "DIAMETER = "
65 PRINT "CIRCUMFERENCE = "
75 PRINT "AREA="

You can change to any other given radius by rewriting line 10. Not
a bad little program, but what a messy print out! WeTI tidy it up in
the next chapter.

Exercise 8.1. Money changing

Today's exchange rate is U.S.A. $1.90 for £1. Write a program to

24

print out the number of $ you get for £75, and how many £ you must
hand over to get $250.

Exercise 8.2. Parachuting

One of the Falconsteam jumps from his plane at 3 000 metres. The
distance he drops (S) is given by S = AT2/2 where A is the
acceleration due to gravity = 9.8 m/s/s and T is the time in seconds
after jumping (air resistance ignored). Write a program to calculate
his height after 10 seconds. If he must pull the rip-cord 500 metres
above the ground, use your program to find roughly how many
seconds his free fall will last.

We Learnt These in Chapter 8

Statements

LET to define a variable.
PRINT to print the current value of a variable.

Anything Else

Rules for naming variables.
Various ways of using variables.

25

9
A Little Punctuation Works
Wonders

So far we have been using PRINT to print items on successive lines
of the screen. We often want to put several items on the same line —
try this short program:

10 PRINT "AREA OF A SQUARE”
20 PRINT
30 LET S = 4
40 PRINT "SIDE= S CM”

Run it, and look carefully at the result of line 40. The vital parts are
the semi-colons which are saying, 'Don't move to a new line, print
the next item immediately after this'. You can use semi-colons as
here, in between PRINT items on a line, or you can put one at the
end of a PRINT line — the next PRINT item will always be printed
right after the last. Notice that we wanted a space between S and
CM, so we had to include one inside the quotes.

Now change the program like this:

35 LETA = S*S
40 PRINT "SIDE = " ; S ; " CM”, "AREA= " ; A ; " SQ CM"

Another useful bit of punctuation, the comma. Each line is
divided into two halves, and the comma says, 'Move to the
beginning of the next half and print the next item there'. You can
use commas in clusters if you like, each one moves the print
position to the beginning of the next half line.

We already know that full stop has the function of a decimal
point. Apart from this the rest of the punctuation (. : ?) can be used
in literal strings but has no other special use.

26

Tabulation

How many characters can you pack into one line of the screen? Try
this:

20 PRINT "012345678901234 . . .

After a while your numbers run onto the next line, but remember
that your 20 PRINT " takes up some space. Stop typing numbers
when the [□ is exactly beneath the first 0, add your final quotes and
press NEWLINE. Now if you run the program you will get a
complete line of 32 numbers (to check up, type another line with
one more number). We can complete the line numbering by
printing the tens, starting with ten spaces:

10 PRINT" 11111111 11222222222233"

Now check the comma print position by typing:

30 PRINT
40 PRINT "FIRST HALF","SECOND HALF"

Now change and extend your program like this (remember that
TAB is one of the set of functions):

40 PRINT "ONE"
50 PRINT TAB 7;"TWO"
60 PRINT TAB 15;"BUCKLE"
70 PRINT TAB 23;"MY SHOE"

It's pretty obvious what's happening. TAB n; moves the print
position to number n and the next item is printed there. You must
follow TAB n with ; (, is possible but not usually sensible).

You often need to print several TAB items on the same line. No
trouble — simply put in more semi-colons to stop the ZX81 moving
to the next line. Here is a bank statement heading, to replace your
nursery rhyme:

40 PRINT TAB 8;"BANK STATEMENT"
50 PRINT
60 PRINT
70 PRINT "DATE"; TAB 6; "DEBIT"; TAB 14; "CREDIT"; TAB

24; "BALANCE"

We can print numbers, expressions or variables at TAB positions,
in just the same way as we have printed literal strings. Here are
some more advanced rules about TAB — they will come in useful
later on.

(1) We do not need to use a number after TAB, we can use a

27

variable (previously defined), or an expression containing
numbers and variables.

(2) If the number after TAB is a decimal, it will be rounded to the
nearest whole number (7.5 rounded to 8).

(3) If the number after TAB is more than 31, it will be divided by
32 and the remainder used as the TAB number.

Exercise 9.1. Circles

Now go back to Chapter 8 and retype the last program there to give
a print out like this:

VITAL STATISTICS OF A CIRCLE
IF THE RADIUS IS 5 CM
DIAM=10CM CIRCUMF = 31.4 CM

AREA = 78.5 SQ CM

When you have written the program, keep it to use in the next
chapter.

We Learnt These in Chapter 9
; , and TAB to vary the PRINT position on a line of the screen.

28

10
Anyone can Make a
Mistake!

So far we have seen two ways of correcting mistakes in a program.
You can use RUBOUT in the line you are currently typing, or you
can delete or replace an existing line by typing its line number plus
the new version.

If we need to change a long linealready entered into the program,
the first method will not work, and the second takes a long time.
The answer is to EDIT the line.

The Current Line Pointer

Let's look at our program first. I am going to edit my version of the
Circles program (Exercise 9.1 in Chapter 9). You could type my
answer out yourself, or try editing your own version.

If you look at the program on the screen, you will find that one of
the line numbers has a cursor S beside it — the current line pointer
or program cursor. Unless you have moved it, it will be at the last
line you typed in. The first job is to move the current line pointer to
the line you want to edit:

(1) If it has not far to move, you can useOfSHIFT 7) orO(SHIFT
6) to push it up or down, line by line.

(2) To move it to the beginning of the program, type LIST and
NEWLINE. The pointer, apparently vanished, has gone to
an imaginary line 0, and can be brought down witho.

(3) To move it anywhere else, type LIST line number. Part of the
program will be displayed, starting at that line number, with
the point right there.

Practise moving your pointer up and down your program, using
these three methods.

29

Editing a Line
1 want to edit my current line 90:

90 PRINT "DIAM = ";D;" CM”, ”CIRCUMF = ”;C;" CM”

by deleting all reference to diameter, and printing circumference in
full at TAB 3.

First I put the current line pointer on line 90 and press EDIT
(SHIFT 1). Line 90 is immediately printed in full at the bottom of the
screen, with the K cursor following the number 90. Now I can
move the KI cursor backwards or forwards along the line using 0
(SHIFT 5) or £> (SHIFT 8), without changing the contents of the line.
Try it, press repeatedly and see the cursor skip along the line,
changing to E as it passes PRINT. Stop it when it has just passed the
comma in the middle of the line, then use RUBOUT to remove
everything back to the first quote. You now have:

90 PRINT □ "CIRCUMF = ";C;" CM”

Type in TAB 3; and then move the cursor along to just after
CIRCUMF and type in the missing ERENCE.

If you mess up your editing, you can always press EDIT again and
bring down the original version of the line.

Assuming that you are happy with the edited version:

90 PRINT TAB 3;"CIRCUMFERENCE = ";C;" CM"

press NEWLINE, and it immediately appears in its right place in the
program, the old version disappearing for ever.

Renumbering Lines

We'll renumber line 90 and make it line 105 — no trouble with the
ZX81. Press EDIT to bring the line down for editing, and then press
RUBOUT twice to remove the 90. Type in the new number 105 and
press NEWLINE to put line 105 into the program. Old line 90 is still
there — you'll have to type 90 NEWLINE to get rid of this.

Some Final Points

Remember that you can also use the arrows to edit a line you are
writing for the first time.

If you write a long program, you will not be able to see the whole
of it on the screen. The ZX81 will do its best to show you the bit you
are currently working on. Otherwise you can type LIST n to display
line n plus as many following lines as there is room for.

30

When your ZX81 memory is nearly full, you will find that EDIT
has no effect, especially with long program lines. The remedy is to
type CLS and NEWLINE. This clears the screen and EDIT will now
bring the current line down for editing.

We Learnt These in Chapter 10

Commands

EDIT to change a line which has already been entered in your
program.

LIST, LIST n to see different parts of a long program.

Anything Else

The current line pointer and how to move it up and down.
How to move the line cursor.
Renumbering lines.

31

11_______
Strictly Functional

The functions are all to be seen under the letter keys — together
with a few oddments that are not functions. Don't worry if you
don't recognise some of the maths functions in this chapter, just
steam on to the useful number-chopping functions at the end.

A function of a number is an instruction to carry out some
operation on that number and produce the answer. The number to
be operated on — it can equally well be an expression or a variable
— is sometimes called the 'argument' of the function. Try typing
these commands:

PRINT SQR 81
LET A = 25 and then PRINT SQR A
PRINTSQR2
PRINT SQR (A*9)

I expect you have recognised SQR as your old friend the square root
— a number which when multiplied by itself gives the number you
started with. Notice that in the last example we wanted the square
root of an expression, so we had to put the expression in brackets. A
function always operates on the number or variable immediately
following it, unless there are brackets to tell it otherwise. Put
another way, a function has a higher priority than any of the maths
operators.

We can use more than one function together — in this case they
are carried out one by one from right to left. For example:

PRINT LN SQR 16

gives us the natural logarithm (to base e) of the square root of 16.
We only have natural logs available on ZX81, by the way, with
natural antilog alongside (EXP or ex).

32

The Trig Functions

Take any circle, divide the circumference by the diameter, and
youget a constant a little over 3 which we call PI (Greek lettern). For
a more accurate version type:

PRINT PI (n on the keyboard)

The trig functions are all functions of angles, and ZX81 needs the
angles to be expressed in radians. We can easily convert degrees to
radians, remembering that:

PI radians = 180°

Try this little trig table program if you are interested:

10 LETXD = 30
20 REM XD IS ANGLE IN DEGREES
30 LET XR = XD*PI/180
40 REM XR IS NOW IN RADIANS
50 PRINT XD;" DEGREES", XR;" RADIANS"
60 PRINT,, "SIN = "; SINXR
70 PRINT,, "COS = "; COSXR
80 PRINT,, "TAN = "; TAN XR

(note ,, for line spaces in 60, 70, 80).
Run the program, and try inserting different angles in line 10 —
check the results in a book of trig tables. Jot down a set of results, for
example:

60° SIN =0.8660254 COS = 0.5
TAN = 1.7320508

Now type the command:

PRINT ASN 0.8660254* 180/PI

and you are back with your original angle of 60°. ASN X (ARCSIN on
the keyboard) gives you 'the angle in radians whose SIN is X'.
ARCCOS and ARCTAN do the same for COS and TAN.

Here Comes a Chopper

More functions — INT, ABS and SGN — let's learn by doing:

10 LETN = 3
100 PRINT "NUMBER"; TAB 8; "INT", "ABS";TAB24; "SGN"
110 PRINT
120 PRINT N; TAB 8; INT N, ABS N; TAB 24; SGN N

33

Put all sorts of numbers into N in line 10 — whole numbers,
decimal numbers, negative numbers. In case you are feeling lazy,
here are some examples:

NUMBER INT ABS SGN
3 3 3 1
3.14 3 3.14 1
0.14 0 0.14 1
0 0 0 0

-3 -3 3 -1
-3.14 —4 3.14 -1

It's pretty obvious what INT is doing (especially if you graduated
on a Sinclair ZX80). INT chops off and loses the decimal part of a
number, leavingthe nearest integer (or whole number) which is less
than the original number.

3.14 gives 3 (the nearest integer less than 3.14)
-3.14 gives —4 (the nearest integer less than -3.14)

ABS is another chopper — this time it removes any negative signs
and replaces them with positive signs, in other words ABS gives the
absolute value of N.

Wield the axe once more with SGN. This time the entire number
has gone, and we are left with nothing but its sign, + or -, attached
to a 1.0 has no sign, so SGN 0 = 0.

Exercise 11.1. Decimal part

There's no function to produce the decimal part of a number — it's
up to you. Write a program to print a number and then its integer
and decimal parts in three columns.

Rounding Off Numbers

Computers often produce an embarrassing number of decimal
places, so roundingoff is a valuable operation. INT will not do on its
own — to see why, type:

PRINT INT 7.01 and PRINT INT 7.99

Both give 7, which is obviously unfair to 7.99, which is so very
nearly 8. The answer is to add 0.5 to the number before we apply
INT — this is how it works:

34

N N + 0.5 INT (N + 0.5)

7.01 7.51 7
7.49 7.99 7
7.5 8.0 8
7.99 8.49 8

Exercise 11.2. Rounding to one decimal place

We've seen how to round numbers to the nearest whole number.
Write a program line to round a number to one decimal place. Hint
— multiply by 10 first, round the result to the nearest whole
number, then divide by 10. Try it now.

I hope you managed that one alright. In the same way you can
round to any number of decimal places, or to the nearest ten,
hundred, and so on.

There's one more important point. ZX81 needs integers to follow
certain statements. We have met TAB n and LIST n already, and
there are these others:

PLOT UNPLOT RUN DIM GOTO
GOSUB PAUSE PRINT AT PRINT(TO)

You are also allowed to use variables or expressions with these
statements — the ZX81 will work out the values for you. The trouble
here is that expressions and variables often deliver decimal
numbers. Don't worry! ZX81 will also round the values up ordown
to the nearest integer, just like we did at the beginning of this
section.

We Learnt These in Chapter 11

Functions — maths, trig, INT, ABS and SGN.
Rounding-off numbers.
Automatic rounding-off by ZX81, when integers are required

following statements (LIST n and so on).

35

12________
Magic Roundabout

Do you remember The Sorcerer’s Apprentice in Chapter 3? Here is a
mathematical model of a broom filling a 150 gallon water tank at the
rate of 4 gallons per trip. We need to make room fora lot of trips, so I
am introducing a new statement, SCROLL. This moves the contents
of the screen one line up, making room for the next item which is
printed on the bottom line (like rolling up a scroll!). At this stage the
screen is technically full, so to print something else we have to
SCROLL again. Type in this program:

10 LETW = 0
20 LETW = W + 4
30 SCROLL
40 PRINT W; “ GALLONS”
50 GOTO 20

Line 10 empties the tank at the start.
Line 20 puts 4 gallons of water in the tank.
Lines 30, 40 print the total water added to the tank so far.
Line 50 contains a really important new statement — GOTO 20

means, 'Go straight to line 20 and continue running the program
from there'. In other words, 'Take a trip to the well for more
water'.

Can you predict the result of this program? Run it and see............
water, water, everywhere! How can we stop the onward march of
the brooms? BREAK (bottom right of keyboard, no SHIFT needed)
is the emergency button, it will always stop the ZX81 while it is
working, so press it now. You can restart after BREAK by pressing
CONT, though your screen contents will be lost.

Well, we made a loop round lines 20 to 50 — GOTO is certainly
an easy way to get lots of output! I n Chapter 3 we saw that we need
to include a conditional jump in the loop to check whether the tank

36

is full, we'll do that now. Change line 50 and add two more lines:

50 IF W< 150 THEN GOTQ 20
60 SCROLL
70 PRINT "TANK FILLED. WHAT NOW?"

There, that worked pretty well, didn't it (apart from a small spill of 2
gallons). Line 50 contains the most important bit of programming so
far. It is saying, 'Check the value of W, if less than 150 then go back
to line 20, if it's 150 or more go on to the next line'. BASIC wastes no
words!

Relational Operators
Line 50 has the general form:

IF something is true THEN do something
e.g. W<150 e.g. GOTO20

The IF keyword is always followed by a statement using one of the
relational operators which are used to compare two items:

= equals
< is less than
> is greater than

< = is less than or equal to
>= is greater than or equal to
<> is not equal to

On either side of these operators we put the two items being
compared, which may consist of numbers, variables or expressions:

IF A=100THEN . . .
IF B<0THEN . . .
IFOA + 21 THEN . . .
IF DOA+B THEN . . .

and so on.

IF something is true THEN what?

The program above used:

. . THEN GOTO 20

which is a very common form of conditional statement. However,
THEN produces the keyword cursor KJ (did yoirnotice?), and it can
be followed by any of the keywords, though some don't make

37

much sense. Common ones are:

GOTO PRINT LET
GOSUB RETURN (we'll meet these later)

Here are some examples of lines with conditional statements:

IF X>21 THEN PRINT “OVER 21 AND BUST”
200 IF T>=Z THEN GOTO 1000
M IF P<0 THEN LET P = 0

GOTO where?

Whether GOTO is compulsory or conditional, it must be followed
by a line number. In that way you direct the ZX81 to any line in your
program, either before or after the GOTO line. We can use a line
number as such, or we can use a variable or an expression (all
variables defined, of course). If the result is a decimal number, the
ZX81 will round it off to an integer, and if the line number is non
existent the ZX81 will go to the next line which does exist.

How about STOP?

With all this to-ing and fro-ing, it's as well to know how to stop! Try
this program:

100 LETS = 78
200 IF S> = 100 THEN GOTO 400
300 PRINT "YOU LOST. SCORE = S
400 PRINT “WINNER. SCORE 100 + "

If you run it, you'll see that you need something to stop the ZX81
charging on and doing both the orders in lines 300 and 400 .

350 STOP
Add this and all is well. Try the program with different values of S,
and make sure it works.

Now here are two problems for you, each needing loops with IF
. . . THEN statements.

Exercise 12.1. Building society interest

The Society offers you 8% compound interest calculated annually.
If you deposit £500 in 1982 and leave it to grow, after one year you
have:

38

500 x— =£540

After two years:
C4n 108 1

540x Yqq and so on.

Write a program to show how your savings build up over seven
years, finishing in 1989. Then change one line to round off each
result to the nearest penny (see Chapter 11).

Exercise 12.2. When are the leap years?

The test for a leap year is 'are the last two digits divisible by 4?' Write
a program to print out the years from 1982 to 1999, and say which
are leap years. The table below will help:
Year

Y

Year divided
by 4
Y/4

INT (Y/4) Is INT (Y/4)
equal to Y/4?

1982 20.5 20 NO
1984 21 21 YES

We Learnt These in Chapter 12
Commands

BREAK to stop the ZX81 while it is working.
CONT to restart after BREAK.

Statements

SCROLL to move the screen contents up one line so that the next
item is printed at the bottom of the screen.

GOTO n d irects the ZX81 to line n of the program.
IF condition THEN statement, executes the statement (GOTO,

etc.) if the condition (X< 10, etc.) is met.
STOP to stop a program and to avoid crashing into later program

lines.

Anything Else

Relational operators (= , <, >, < = , > = , <» to compare two
items.

39

13
Flowcharts

We are able to write quite complicated programs, now that we have
learnt about loops and conditional branching. At this stage, it is
worth reminding ourselves about flowcharts as an aid to good
programming.

Suppose you have some operation for which you want to write a
program — let's use the sorcerer's apprentice idea from Chapter 3
as an example. The idea of a flowchart is to split the operation up
into separate stages, to write each stage in a box, and to join the
boxes by arrows to show the order in which the stages have to be
done. We use boxes of these shapes:

Beginning or end.

'Processing block' — one
stage of the operation which
needs no decision.

'Decision diamond' — here a
question is asked and the
flowchart branches to either
side depending on the answer.

Now we can draw up a flowchart for filling the water tank from
the well. Compare it with the original program in Chapter 3, and
with the mathematical model in the last chapter. Notice how the
place of the IF . . . THEN . . . statement is taken by the decision
diamond.

40

Some people can carry a flowchart in their heads and type out a
program direct. However, most of us will benefit from drawing up a
flowchart on paper first. We'll see more examples of flowcharts for
ZX81 programs later.

Broom filling water tank from well

41

14
Putting in Data

Let's go back to Exercise 12.1 in Chapter 12 — you'll find the listing
in Appendix 4. Not a bad program, giving you interest at 8% a year
for 7 years on your £500, but what a bore if you want to change your
capital — you have to retype line 40. Well, we can do better than
that. Type out the listing for Exercise 12.1, but change line 20 to
read:

20 INPUT C
Run the program — what's this? A blank screen with an [L] cursor at
the bottom! ZX81 is trying to say, 'I've stopped and I'm waiting for
you to put in a value for variable C'. Type 500 and then press
NEWLINE — you'll get just the same output as you got before with:

20 LET C = 500

but of course now you can make C different everytime you run. Try
running a few times and varying C. INPUT is great!

It makes things easier for people using your programs if you print
a 'prompt' to tell them what data they are supposed to be putting in.
Add one more line:

10 PRINT "WHAT IS YOUR CAPITAL?"

Much easier to use now, isn't it? Stay with us, there's more to come.

Input Loops
After running the program, suppose you want it to go back to the
beginning and run again with different capital. What instruction
would you use? You guessed it:

150 GOTO 10

42

Type that in, and run it twice with different values for C.
Hmm . . . not so good, it crashed with a 5/100 report code. You

can check that in your manual — it means 'screen full', and we've
got to do something about that next. We could use SCROLL, can
you imagine your output rolling up the screen with a pause now
and again for input. In this case it's more elegant to wipe the screen
before each new printout — the statement is CLS (clear screen).
Here's the complete listing:

r> 10 PRINT,, "WHAT IS YOUR CAPITAL?"
20 INPUT C
30 CLS
50 LET Y = 1982

►100 PRINT Y;" CAPITAL+ INTEREST = £";C
110 PRINT
120 LETY = Y+1
130 LETC = C*1.08

M40 IF Y< 1990 THEN GOTO 100
M50 GOTO 10

We now have two loops, one inside the other (nested). Why can't
we put CLS at the beginning of the outside loop? Try it.

Getting Out of an Input Loop

Well — it's not the most enthralling of programs, but how do you
stop it, it seems capable of demanding data for ever! The official way
is to type STOP at the next pause for input, and then NEWLINE will
stop the program with a D/20 message. If you happen to want to
restart you type CONT, the ZX81 will still be at line 20 waiting for
data, though CONT will have cleared the screen.

Permanent Loops
This input loop is a permanent loop, which is really only allowable
because of the INPUT statement which stops it in line 20. If we
change line 20 back to:

20 LET C = 500

we shall find that the poor old ZX81 chunters round and round the
outside loop indefinitely — or until we press BREAK. Some bad
programming there!

Now for some examples for you to try, using INPUT loops:

43

Exercise 14.1. Percentages

Write a program to convert your exam results into percentages.
You'll have to input your mark, the maximum possible mark, and
then use

Mark
Max. mark

x 100 = Mark%.

Exercise 14.2. Petrol consumption

Write a program to input the number of miles driven, gallons used,
and to calculate miles per gallon.

We Learnt These in Chapter 14

Statements

INPUT to stop the program to enter values of variables.
CLS to clear the screen to make room for more output.
STOP as input to get out of an input loop.
CONT to restart after STOP.

Anything else

Input loops to stop repeatedly to collect data.

44

15____________
Saving Programs and Data

Using the ZX Printer

Imagine, you've written a program that works and you want to make
a permanent record of it. When you switch off, the program willbe
lost and you'll have to work it out again. Obviously you can write it
down on paper, but this is hard work and it's easy to make mistakes.
It's very much easier if you happen to own a Sinclair ZX Printer, and
you have had the forethought to plug it in before you started
(Sinclair recommend that you do not connect the printer without
switching off first). In this case you can make a listen paper of all the
lines of your program by typing the command LUST. If you only
want to record part of the program, you can type LUST n to list from
line number n onwards, and you can always press BREAK to stop
printing whenever you like.

Another way of using your printer is to make a record on paper of
any data that your program has worked out and printed on the TV
screen. Use the keyword COPY, either as a command or a
statement, to make the printer record the whole contents of the TV
screen on paper.

Back-up Storage

Whether you have copied the program by hand or with the ZX
printer, you have a lot of typing to do when you want to use it again.
You can save yourself all that typing by putting the program into
back-up storage, which for the ZX81 means almost any tape
recorder.

45

The ZX81 and the ZX Printer, designed especially for use with Sinclair
personal computers

Saving a Program

My cassette recorder has 3.5 mm jack plugs for microphone (MIC)
and earpiece (EAR) and automatic recording level. It has a reliable
tape counter (very useful), and a red LED indicator for recording
level (a meter is just as good). If your own tape recorder lacks some
of these features, you may have to adapt, and you will probably find
it less convenient.

You'll need to keep a tape specially for ZX81 programs, with a
careful record of its contents. Here is a list of operations that work
for me — if you run into trouble you will find Chapter 16 in theZX81
Manual very helpful.

(1) Connect the MIC sockets on ZX81 and recorder.
(2) Wind the tape back to the start, zero the counter, wind the

tape on to an empty stretch and note the counter reading.
(3) If you wish, record the name of the program on tape using

your microphone (useful if you have no counter).
(4) Type the command SAVE “NAME" (your choice of name).

Make a note of the name.
(5) Press the RECORD and PLAY keys on the tape recorder, then

press NEWLINE. After a five-second blank, you will see a

46

quickly changing set of thin black and white stripes (your
program). Check that it is being recorded (LED or meter).

(6) At the end, the screen will go blank with a 0/0 report code.
Switch off the tape recorder. Your program is still unchanged
in the ZX81.

It's best to leave decent spaces — say five seconds — between the
programs on your tape. A full 1 K program takes about 15 to 20
seconds to record.

Loading Your Program

Tomorrow has come — you want to put your program back into the
ZX81. This is how I do it.

(1) Wind the tape to the point where recording started.
(2) Connect the EAR sockets on ZX81 and recorder.
(3) Type LOAD "NAME” or LOAD " ",
(4) Set the tape recorder volume to about 3/4 of maximum, and

any tone controls to maximum treble, minimum bass.
(5) Press NEWLINE — you will see various fairly even patterns

on the screen, and then suddenly a rapidly moving pattern of
horizontal bars, a bit like a Venetian blind gone crazy. This is
your program.

(6) After loading, the screen will clear with a 0/0 report code.
Switch off the tape recorder.

(7) You can now press NEWLINE for a listing of the program, or
RUN to run it.

It's Better to Load a Named Program

One gets lazy and stops bothering to type the program name in the
quotes after LOAD, but this makes loading less reliable. If you have
named the program, the ZX81 will ignore all others, even the tail of
a previous program. In fact if required the ZX81 will search through
a tape and load the named program. You must get the nameexact/y
right — one letter or space wrong and nothing will be loaded.

Saving Data

Many computers use DATA and READ statements which allow
program lines containing many items of data. ZX81 does not have
this facility, and it is obviously tedious to put this data in by means of

47

LET statements, or to input the data each time the program is run.
All is not lost, however! It's very important to realise that once you

have run a program and put in data with INPUT, there are only
three operations which will get rid of that data:

(1) Switching off the ZX81.
(2) Pressing RUN again.
(3) Pressing CLEAR (a little used key which erases all variables).

To make the program work without pressing RUN we have to use
GOTO as a command. Type this short program:

10 INPUT A
20 INPUT B
30 INPUT C

100 PRINT A; B; C;" GO”

Now type the command GOTO 100 — you'll get the 2/100 report
code meaning 'variable not known'. RUN the program and put in
values of 1, 2, 3 for variables A, B, C — this time you'll get the
expected output:

123 GO

Now if you command GOTO 100, you'll get exactly the same
output — the data is still all there! Without doing anything else,
SAVE the program in the usual way, and with it you have saved your
data. If you want to check up on this, first unplug the ZX81 for a
moment to remove the possibility of cheating! Then LOAD in the
usual way, command GOTO 100, and the output:

123 GO

will confirm that the data is still there. If you type RUN at any stage,
the data vanishes, and you will have to put it in again. One last
point. When you are really pushed for memory space, you may find
that this will save some useful bytes:

(1) Write the part of the program needed for putting in the data.
(2) Run the program and input the data.
(3) Delete the program written in (1) and write the part of the

program that uses the data.
(4) Save program plus data, and use GOTO n to make the

program work — never RUN!

We Learnt These in Chapter 15
Commands

LUST or LLIST n to list a program on paper using the ZX Printer.

48

COPY to make a copy of the contents of the TV screen on paper,
using the ZX Printer. This can also be used as a statement in a
program.

SAVE to transfer programs from the ZX81 onto tape.
LOAD to put taped programs back into the ZX81.
GOTO n to execute a program from line n without clearing any

data.

Anything else

How to save data on tape and use it again.

49

16___________
Round and Round — Just
Ten Times

With a quick look back to Chapter 12, you could write a program to
go round a loop exactly ten times, couldn't you?

10 LET J = 0
20 LET J = J 4-1
30 PRINT J;“ TIMES ROUND THE LOOP”
40 IF J< 10 THEN GOTO 20
50 PRINT
60 PRINT "STOPPED FOR A REST"

BASIC has special statements to do the same job — change the
above program as follows:

Delete line 10
20 FORJ = 1TO10
40 NEXT J

Run it — the output is identical — FOR/NEXT is a wonderful time
saver. To see how it works, study the complete program and the
flowchart opposite.

Here are some points about FOR/NEXT loops:

(1) N is the loop control variable. It may have any single letter
name from A to Z, but steer clear of letters you are using
elsewhere for ordinary variables.

(2) The numbers on either side of TO are the lower and upper
limits for the loop control variable. As usual they may be
numbers, variables or expressions, but the ZX81 does not
round off values in this case.

(3) The loop control variable is increased by 1 each time round
the loop. Note that it finishes up 1 more than the upper limit
for the loop.

(4) Inside the loop may be any number of program lines with

50

any of the usual statements. You can do anything you like
which uses the value of N, so long as you don't change it.
Remember that N increases by 1 each time round the loop.

(5) You may jump out of the loop with an ¡F/THEN GOTO
statement, but don't jump into the middle of a FOR/NEXT

51

loop — the ZX81 will not know what the loop control
variable is.

(6) FOR without NEXT is incorrect but will be ignored. NEXT
without FOR will stop the program with a 1/n or 2/n error.

Now try out your FOR/NEXT technique with this problem:

Exercise 16.1. Square root table

Write a program to print out the whole numbers from 0 to 16 with
their square roots alongside, under a suitable heading.

Step by Step
Hold on tight for the next revelation — we don't have to increase by
1 each time round a FOR/NEXT loop! If we add the magic word
STEP, we can increase by any regular amount we like, or decrease
by using a negative step. Some examples:

FOR N-1 TO 12 STEP 3
FOR J =8 TO 0 STEP-1
FOR K= P TO Q STEP 3*R
FOR L = 0 TO 5 STEP 0.5

Try changing the appropriate line in your last square root program:

FORN = 0TO 16 STEP 2

and

FOR N-16 TO 0 STEP -2
Now try this exercise using FOR/NEXT/STEP:

Exercise 16.2. Multiples

Write a program to print out all the multiples of 4 between 0 and
100, in four neat columns. Hint — use the current value of the loop
control variable not only as the multiple of 4, but also to direct
where it is printed on the line.

We Learnt These in Chapter 16
Statements

FOR/TO/NEXT to go round a loop any given number of times.
STEP to specify increases or decreases in the loop control

variable, other than + 1.

52

17
Loops Within Loops

In the last chapter, every program had one single FOR/NEXT loop.
But the number of loops in a program is not limited — try this for a
start:

r~ 10 FORJ = 0TO4
20 PRINT TAB J; “FIRST LOOP"

I— 30 NEXT J
40 PRINT

r—100 FOR J = 10 TO 12
110 PRINT TAB j; “SECOND LOOP"

Li20 NEXT J

Notice that we used J for both loop control variables — quite in
order for separate loops, and a useful memory saver.

Here is a different program — note the difference in output.

i—10 FORJ = 1 TO 3
20 PRINT "OUTSIDE LOOP"

r30 FORK=1TO5
40 PRINT TAB 5; "INSIDE LOOP"

L50 NEXTK
L60 NEXT J

This time we have a 'K loop' inside the 'J loop' — we call these
nested loops. You can use up to 26 nested loops, but they must obey
two important rules:

(1) You must use different letters for the loop control variables.
(2) Inner loops must be completely inside outer loops — no

overlapping at either end.

Remember those addition squares in school maths? Here's a
small example:

53

0 1 2
1 2 3
2 3 4

If you trace down from the 1 in the top row and along from the 2 in
the left hand column, your lines meet at 3, showing that 1+2 = 3.
We can draw these squares neatly with the ZX81:

10 FORJ = 0TO5
20 FORK = 0TO5
30 PRINT TAB 4*K; J + K;
40 NEXT K
50 PRINT,,,,
60 NEXT J

Now an exercise for you to play with.

Exercise 17.1. Multiplication square

Here is a small multiplication square which works in the same kind
of way:

1 2 3
2 4 6
3 6 9

Change the last program for the addition square, to draw out a
multiplication square covering numbers from 1 up to 7.

Simple Graphics

Graphics and loops often go together, so let's have a look at the
graphic blocks on the keyboard. Remember that you must press the
GRAPHICS key first, and then again when you have finished. Each
graphic block is a square the size of a letter, divided into four
smaller squares which can be black, white or (to a limited extent)
grey. They are beautifully illustrated on page 78 of your ZX81
manual. There are also inverse letters and some inverse symbols,
and inverse space (black square) gets a lot of use. We can make the
ZX81 print any of the graphic blocks as though they were letters —
here's an 8 by 8 grey square as an example:

100 PRINT
Type it and run it — one square drawn, 63 to go! Add these lines:

90 FOR K-1 TO 8
110 NEXTK

54

Brilliant! A rowof 8 blocks this time. Add two more lines, to give us 8
of these rows:

80 FORJ=1 TO 8
130 NEXT]

We have 64 blocks now, but they're not exactly in the form of a
square. What went wrong?That's right, it's the semi-colon after each
block that is printing them all in a continuous line. We need to jump
to a new line after each set of 8 blocks — in other words at the end of
each J loop. One more line will do it:

120 PRINT

and now your square is looking good, thanks to nested loops.
It's your turn now:

Exercise 17.2. Rectangle

Write a program to draw a black rectangle 19 blocks wide and 5
blocks high.

Now modify your program so that it prints a title "THIS IS A
RECTANGLE" in inverse graphics right in the middle of the
rectangle.

There's plenty more to do with graphics — to be continued in
Chapter 23.

We Learnt These in Chapter 17

Multiple loops and nested loops.
Simple graphics, using the graphics blocks.

55

18
What a Friendly Machine!

Remember LET and INPUT? They were two ways of putting a value
into a numeric variable. Wouldn't it be great to be able to do the
same for words? Now for the good news, you can do all that and
more! Here is a sample:

10 PRINT "TYPE YOUR NAME THEN NEWLINE"
20 INPUT AS
30 PRINT "THANK YOU AS
40 FOR J = 1 TO 200
50 NEXT J
60 PRINT ,, "THATS A PRETTY NAME"

AS is the big news — it's the name of a string variable. At line 20 the
program stops, and the cursor JU at the bottom of the screen tells us
that the ZX81 is waiting for a string input. So we type in any
characters we like (or even none at all, the empty string), press
NEWLINE, and our string is pigeonholed under the label AS. We
can now use AS any time we wish, as in line 30. Lines 40 and 50 are
an empty FOR/NEXT loop, a handy way of pausing in between
outputs. You can use up to 26 string variables with names using any
single letter from A to Z, followed by the S sign.

If we add two more lines:

70 GOTO 10
25 CLS

we now have astringinput loop, and we can continue typing names
(pretty ones) as long as we like. These loops are somewhat hard to
get out of, since whatever we type in is accepted by the ZX81 as a
new string input. Try typing STOP for example. The solution is to
remove the string input quotes at the bottom of the screen —
pressing EDIT is the simplest way, or you can rub them out as usual.

56

Now if you press STOP and then NEWLINE you will find that you
are back in the command mode.

Now here is a program in which we use LET to define two string
variables.

1(3 LET AS= "REGENT"
2(3 LET BS = " STREET"
30 LETCS = AS + BS
4(3 LET N = 1(3
5(3 PRINT "WHO LIVES AT N; Ci;

In line 3(3 we have joined together two string variables
(concatenated is the official word), and put the result into a third
string variable. In line 5(3 we have printed a whole mixture of items,
literal strings, number and string variables, all on one line of the
screen. We can print any of these items anywhere we like on the
line by using ; , or TAB as usual.

What Can You Do with String Variables?

As we've seen, you can print them, as often as you like, and you can
join them together like a string of beads by using + (—will not work,
by the way). You can also change them in a program, just like
number variables. For example:

25 LET AS = " DOWNING"

We've changed our mind about AS!
One more thing you can do is to compare string variables, either

with each other or with literal strings, using our old friend IF. More
lines for you to type:

6(3 INPUT PS
7(3 PRINT „PS
8(3 IF PS = "THE PRIME MINISTER" THEN GOTO 1(3(3
9(3 GOTO 5(3

1(3(3 PRINT „ "THATS RIGHT"

In line 8(3 we have used = to compare the input answer PS with
the literal string "THE PRIME MINISTER". Note that in BASIC, =
means exactly equal — every letter, dot, comma and space must be
identical! Run the program and vary the input to check this. Try
writing the program in a simpler way:

8(3 IF PS <> "THE PRIME MINISTER" THEN GOTO 5(3
Delete line 9(3

Occasionally we use > and < to compare string variables. This
program will show you exactly what happens:

57

10 PRINT "TYPE A WORD"
20 INPUT Ag
30 PRINT "NOW ANOTHER"
40 INPUT Bi
50 PRINT,,AS; " COMES
60 IF A$>B$ THEN GOTO 100
70 PRINT "BEFORE ";
80 GOTO 110

100 PRINT "AFTER
110 PRINT B$, " IN THE DICTIONARY"

Run the program and input ARK and ZOO, then ABRACADABRA
and AARDVARK. Now you know what > means when applied to
strings.

This chapter has taken our programming a long way forward.
Here is a simple program to practise your string variables.

Exercise 18.1. Form filling

Write a program requesting someone to type their name, age and
home town. Print out the information and thank the person nicely.

Using the Printer Again

Now that we know how to print numbers, literal strings, number
and string variables on the screen, underthe control of punctuation
and TAB, it is important to note that we can print all these on paper
just as easily. We need the ZX Printer, which must have been
plugged in before we switched on, and we use LPRINT in place of
PRINT all through the program. You can even mix up PRINT and
LPRINT statements. This program puts odd numbers on the TV
screen and even numbers on paper:

10 FORJ = 1TO20
20 IF J/2 = INT (J/2) THEN GOTO 100
30 PRINT J
40 GOTO 200

100 LPRINT J
200 NEXT]

Now after running the program, change one line as follows:

100 LPRINT J;"";

Thistime weare making the ZX81 printtheeven numbersall on one
line. Notice how the printer saves them up till the end of the

58

program, and then prints them all at once. The ZX Printer stores up
its LPR1NT items in a buffer store until there is some reason to print
the current buffer contents and move on to the next line, for
example:

end of program
current line full
last LPRINT item not followed by ; or,
TAB number less than the current print position.

We Learnt These in Chapter 18

Statements

LET to define a string variable.
INPUT to stop the program to input a string variable.
LPRINT to print any item on paper, using the ZX Printer.

Anything else

Printing and joining string variables.
Comparing string variables and strings using IF with

= , <>, > or <.

59

19
Change Speed, Stop and
Pause

All the programs in this book so far will have worked for both ZX81
and ZX80 (with 8K ROM). However, while ZX81 owners have been
watching the work in progress on their screens while the programs
are running, ZX80 fans have had to sit in front of blank grey screens,
waiting for a final print out.

With a ZX81 you can choose to run it like a ZX80 by typing the
command FAST, and it then works at four times the speed of the
usual SLOW mode. Indeed, you can get the best of both worlds by
using FAST and SLOW as statements in your programs. In the
following program you can compare FAST and SLOW working:

10 FAST
100 CLS
110 FORJ = 1TO40
120 LET C= EXP (LN J/3)
130 PRINT C,
140 NEXT J
200 STOP
210 SLOW
220 GOTO 100

The program first works out a set of 40 cube roots in FAST mode,
and when they are all done it displays them (thanks to STOP). Now
if you type CONT, it will change to SLOW mode and do the same
work again.

The choice of FAST or SLOW is a matter of personal preference,
but here is a rough guide:

FAST preferred:
complicated calculations
tedious printouts

60

program writing, provided you don't mind the screen flashing
each time you press a key.

SLOW preferred:
most programs, especially those using graphics.

SLOW essential (in other words, ZX80 will not do)
programs with moving graphics, bouncing balls, flashing

words, and so on.

By the way, when you save a program you also save the mode the
ZX81 happens to be in, whether FAST or SLOW. Make sure it's in
the mode you want.

Stopping Your Program

These things will make your program come to a stop:

(1) It has reached the end and stopped with a 0/n report code.
(2) You have pressed BREAK and stopped it with a D/n code.
(3) A STOPstatement was included in one of your program lines

(9/n code).
(4) You have used up all the lines in the screen and stopped with

a 5/n code.
(5) Some other error has stopped the program (various codes).
(6) It has reached an INPUT statement and is waiting for you to

enter a number or a string.

The last is the most useful of all. You can use it to stop the program,
look at the display on the screen, and re-start when you are ready.
Look at this program, which shows you how fast bacteria grow
under favourable conditions. Doubling every 30 minutes is fairly
typical, ignoring the fact that they also run out of food or die.

10 LETN = 1
20 LETT = 0
30 CLS
40 PRINT T; “ HOURS HAVE GONE BY"
50 PRINT,, "YOUR CULTURE CONTAINS N; " BACTERIA"
60 LETT = T + 0.5
70 LETN = 2*N
80 PRINT,,,, "PRESS NEWLINE TO GO ON"
90 INPUT AS

100 GOTO 30

Notice how we could input anything at line 90, but the empty string
(just pressing NEWLINE) is all that's needed to start the program
moving again.

61

Program Branching and Crashproofing

We can use a similar technique to allow a user the choice of
branching to different parts of the program:

100 PRINT “TYPE YES OR NO”
110 INPUT AS
120 IF A$ = "YES" THEN GOTO 200
140 PRINT "YOU TYPED NO”
150 STOP
200 PRINT "YOU TYPED YES”

Run the program and obey the instructions, typing YES or NO
obediently. Now be a devil and type DONALD DUCK — the
program stoutly declares 'YOU TYPED NO'!

A warning — the world is full ofclever dicks who are out to try and
make computers look silly. You must also think of the newcomers
to computing — they'll be put off for ever if they keep getting report
codesand having to start again. All programmers are responsible for
making their programs foolproof and vandalproof as far as possible.
Hard to do with 1K of memory, but at least remember the principle
for later!

Let's patch up the last program by adding:

130 IF AS<> "NO" THEN GOTO 110

Much better now — I've drawn two flowcharts to make it clear what
is happening in each version. Over to you now:

Exercise 79.7. Choosing numbers

Write a foolproof program to ask the user to input a whole number
between 1 and 100, and to print out the number together with its
square. Include lines to make sure that it is a whole number and
between 1 and 100. There is one input error you can not guard
against at present — what is it?

Pauses in Programs

ZX81 has a built-in pause statement — let's see how it works:

10 PRINT "HOW LONG?"
20 PRINT " TYPE NUMBER OF SECONDS"
30 INPUTS
40 PRINT S; " SECOND PAUSE STARTS NOW"
50 PAUSE S*50
60 PRINT "TIMES UP"

62

The statement PAUSE n gives a pause equal to n frames on the TV
screen (at 50 per second in the UK). It works in SLOW or FAST
mode, but in FAST, or with a ZX80, the manual recommends that
you follow each PAUSE statement with this line to avoid losing your
program.

Line Number POKE 16437,255

I have not had this problem with PAUSE in FAST mode, but you
have been warned! You can't pause for more than 32767 TV frames
(nearly 11 minutes), and if n is bigger than this the pause is for ever.
However, if you press any key during a pause the program restarts
at once, so this is another way of stopping a program to read the
current display:

200 PRINT "PRESS ANY KEY TO GO ON”
210 PAUSE 40000
220 PRINT "BACK TO WORK”
230 GOTO 220

We Learnt These in Chapter 19

Commands

FAST to put the ZX81 into FAST mode.
SLOW to return the ZX81 to SLOW mode.

Statements

FAST and SLOW as above.
PAUSE n to give a pause in the program.

Anything Else

When to use FAST and SLOW modes.
INPUT or PAUSE for temporary stops in the program.
Making the program branch, under control ofa string input by the

user.
Crashproof programs.

63

The YES/NO program 1. Subject to the attention of vandals

64

The YES/NO program 2. Vandal-proof version

65

20_______
A Chancy Business

Random Numbers
There's a simple random number generator we've all used — the
dice. This obeys certain obvious rules. It can only give numbers
from 1 to 6. Unless it is loaded, or an odd shape, each of the
numbers is equally likely to turn up. Finally, being a dumb piece of
wood or plastic, it is not affected by anything that has happened
before. We can turn these into general rules for random numbers:

(1) A random number is one drawn from a given set of numbers.
(2) Each number in the set is equally likely to be drawn.
(3) The draw is completely unaffected by previous draws.

ZX81 provides a random number function, RND — let's try it out:
100 FORJ = 1TO20
110 PRINT RND
120 NEXT J

Run it a few times — what do you notice? Sets of twenty numbers,
each one bigger than 0 and less than 1, and they certainly look fairly
random. In fact they are pseudo-random numbers — each one is
calculated in a clever way from the one before, so that rules (1) and
(2) are obeyed. However, they always start with the same 'seed'
number when the ZX81 is switched on, and the same sequence of
numberswill always be repeated (you can check this if you want to).
Playing games with the same set of dice throws every time is a bit
predictable, to say the least. Fortunately ZX81 provides a statement
which sets a random 'seed' number at the start:

10 RAND

Now you'll get a different set of random numbers each time you
switch on and run (you can check this too!).

66

If we do want the ZX81 to throw dice, how are we going to
convert our RND values into numbers from 1 to 6? Have a look at
this:

Set of Numbers
given by

Smallest Largest

RND 0.000 . . . 0.999 . . .
RND*6 0.000 . . . 5.999 . . .
RND*6+1 1.000 . . . 6.999 . . .
INT (RND*6+1) 1 6

So, change line 110 in our program:

110 PRINT INT (RND*6+1)
Now we really do seem to be throwing dice. By taking RND,
multiplying it by one number and adding or subtracting another
number, we can change it to any range of numbers we like.

Exercise 20.1. Roulette

Write a program to fill the screen with spins of a roulette wheel,
which in the best games vary from 0 to 36. Check that 0 and 36 really
do appear.

At the end of Chapter 11 we looked at various statements which
needed numbers to go with them. You can often use random
numbers, as with this constellation program:

10 FORJ=0TO21
20 PRINT TAB RND*31 ;
30 NEXT J
40 PAUSE 50
50 CLS
60 GOTO 10

Remember that we need not do anything to RND*31 in line 20, it's
automatically rounded to the nearest whole number between 0 and
31.

In the same way we can use random numbers to define the size of
a FOR/NEXT loop, though here no rounding off takes place and it
may be advisable to convert the random numbers to integers. You
try this one:

Exercise 20.2. Random rectangle

Write a program using nested FOR/NEXT loops to draw a rectangle

67

of random size (length and breadth varying between 1 and 15).

Random Branching

We have learnt how to stop a program and give the user a choice of
two or more branches to go along. Using RND, we can remove the
choice and let the branching happen by chance. Here's a simple
example:

10 PRINT "YOU ARE WALKING HOME",,,
20 IF RND< .5 THEN GOTO 100
30 FORJ = 1TO15
40 PRINT TAB J; " "

(GRAPHICS/SHIFT YYAHYY)
50 NEXT J
60 PRINT,, "YOU WENT THE PRETTY WAY"
70 GOTO 200

100 PRINT,, "SHORT CUT"
200 PRINT,, "YOU ARE HOME"

Another way of branching at random is to GOTO a random
number. Here is a program which draws blocks out of a bag
containing equal numbers of black, grey and checked blocks.

50 FOR J =0 TO 5
60 LET X= 100 * INT (RND*3 +1)
70 GOTOX

100 FORK=1TO3
110 PRINT TAB 5*];" " (3 of GRAPHICS/SPACE)
120 NEXTK
130 NEXT J
140 STOP
200 FORK=1TO3
210 PRINT TAB 5*J; "WW' (3 of GRAPHICS/SHIFT H)
220 NEXTK
230 NEXT J
240 STOP
300 FORK = 1TO3
310 PRINT TAB 5*J; " Wh " (3 of GRAPHICS/SHIFT Y)
320 NEXTK
330 NEXT J

Notice that the last part of the program is repeated three times at
lines 100, 200 and 300 — bad programming and a waste of memory.
We'll improve on this in the next chapter.

68

We Learnt These in Chapter 20

Statement

RAND to pick a random seed for calculation of random numbers.

Function

RND, a pseudo-random number between 0 and 1.

Anything else

Using random numbers.
Random branching in a program.

69

21
Gone Out, Bizzy, Back
Soon

Subroutines

The statement GOSUB n is related to GOTO n and is extremely
useful. It tells the ZX81,

(1) To go to the part of the program at line n.
(2) To do what it is told to there.
(3) To come back to the part of the program that it started from.

Here is a very simple demonstration:
PRINT "SUBROUTINE DEMO”

110 PRINT,, "JUST OFF TO SUBR 1000”
120 GOSUB 1000
130 PRINT "RETURNED"
140 PRINT,, "ON THE WAY TO SUBR 2000”
150 GOSUB 2000
160 PRINT "BACK AGAIN"

Run it nowand see what happens. Well, it obeyed lines 100 to 120,
went off to line 1000, found nothing there and stopped. We must
write in the subroutines:

1000 PRINT TAB 5; "THIS IS SUBR 1000"
2000 PRINT TAB 5; "WE ARE AT SUBR 2000"

Not right yet — it went to line 1000 as planned, didn't go back again
but went on to line 2000 and stopped. We need to put in the
instructions to make it return from each subroutine — RETURN.
We'll also put in a STOP to fence off the subroutines from the main
program:

900 STOP
1000 PRINT TAB 5; "THIS IS SUBR 1000"

70

12)12) RETURN
22)2)2) PRINT TAB 5; "WE ARE AT SUBR 22)2)2)"
22)1(3 RETURN

Run the program and make sure it works. It's worth writing down
the program lines in the order that they are used:

100, 110, 120, 12)2)2), 101(3, 130, 140, 150,
2000, 2010, 160, 900

Now that we've learnt something about subroutines, we can
write down some formal rules:

(1) At GOSUB n the ZX81 goes straight to line n (or to the next
line if n does not exist), n may be a number, a variable or an
expression.

(2) The ZX81 executes the subroutine just as though it is part of
the main program.

(3) The subroutine must finish with a RETURN statement, which
sends the ZX81 back to the line following the original
GOSUB n statement.

(4) You may jump out of one subroutine into another, provided
you are very clear-headed about what you are doing!

(5) It is often useful to have a conditional GOSUB in your
program:

IF something is true THEN GOSUB n.
(6) Put all your subroutines at the end of your program, and use

STOP between main program and subroutines to avoid
crashing into them.

We can often usefully include GOSUB in a loop — here is a new
version of the random cube drawing program in the last chapter. It's
much shortened by the use of GOSUB:

1(3 forj=<3to5
22) LET X= 12)2) *INT (RND*3 +1)
32) FORK=1TO3
4(3 GOSUB X
5(3 NEXT K
6(3 NEXT J
9(3 STOP

1(3(3 PRINT TAB 5*J; " M " (3 of GRAPHICS/SPACE)
112) RETURN
2(3(3 PRINT TAB 5*J; " CED " (3 of GRAPHICS/SHIFT H)
21(3 RETURN
3(32) PRINT TAB 5*J; " W. " (3 of GRAPHICS/SHIFT Y)
312) RETURN

71

When Should We Use Subroutines?

As we have already seen, it makes sense to use a subroutine when
we want to leave the main program at several points and do the
same operation each time. Subroutines save both computer
memory and programmers' time and effort.

Another reason for using subroutines is to make a long program
easier to understand. We divide it up into:

A main program, which may be quite short.
A set of subroutines, labelled with REM statements.

It is also a great help to keep lists of your subroutine numbers and
titles, and of all the variable names used.

Finally, you will write clever bits of program which you will want
to use again. How much easier this will be if they are in the form of
subroutines which can be transferred bodily to a new program.

Exercise 21.1. Water tank volumes

Water tanks are cubes or cylinders for this exercise. Write a
program which allows the user to choose one of these two shapes
(rejecting all others), input the size and calculate the volume using
one of these formulae:

Volume of cube = (edge length)3
Volume of cylinder = Heightxnx

diameterX 2
2 I

We Learnt These in Chapter 21

Statements

GOSUB n to direct the ZX81 to a subroutine at line n.
RETURN at the end of a subroutine to direct the ZX81 back to the

main program.
STOP to fence off the subroutines from the main program.

72

22_________
Speeding up the Input

So far, to input a number or a string, we have had to stop the
program, type it in and then press NEWLINE to go on. A new
function, INKEYS, allows us to do this more quickly and smoothly,
but it does have some limitations — for a start it needs the ZX81 in
SLOW mode.

When the ZX81 meets INKEYS, it instantly checks every key on
the board. If one key is being pressed, with or without SHIFT, the
corresponding character is put into a single character string variable
labelled INKEYS. Try this for a start:

100 PRINT IN KEYS;

A laborious way of printing?, wasn't it! You happened to be pressing
NEWLINE at the time, which returns a ? character. Now we'll put
INKEYS in a loop, to give you a chance to get your finger off
NEWLINE and onto some other keys.

110 GOTO 100

Have fun pressing lots of keys, but remember that for each
character printed on the screen, ZX81 has checked the whole
keyboard and put a new character into INKEYS. By the way, you
can't press SPACE or £ — ZX81 reads these as BREAK.

I think you've grasped the idea that INKEYS is an ephemeral thing
— whenever you mention INKEYS in a program it produces a new
one, so we have to get up to various tricks to make use of it.

Program branching

Here is a smooth, fast version of the program with a choice of
branches, like the one in Chapter 19.

73

10 PRINT "CO ON OR STOP?”
20 PRINT,, "PRESS G OR S"
30 IF INKEYS = "G" THEN GOTO 200
40 IF INKEYS = "S" THEN GOTO 100
50 GOTO 30

100 PRINT,, "YOU STOPPED"
110 STOP
200 PRINT,, "YOU WENT ON"

Almost foolproof — press any key you like (except BREAK), and the
ZX81 continues looping round lines 30/40/50 until G or S is pressed.

A Permanent Record of INKEYS

In the program above we used INKEYS and then forgot it, but
sometimes we need to make a permanent record like this:

10 PRINT "PRESS ANY KEY"
100 IF INKEYS <> " " THEN GOTO 100
110 IF INKEYS= " " THEN GOTO 110
120 LETAS = INKEYS
130 PRINT "YOUR INKEYS WAS AS

That needs a little explaining! Line 100 holds up the program till no
key is being pressed — giving you a chance to get your finger off
NEWLINE. Then I ine 110 stops the program until a key is pressed,
and finally line 120 puts the INKEYS character into AS. Run the
program, and then type in the commands:

PRINT INKEYS (it's gone)
PRINT AS (it's still there)

With a few additions, we can use INKEYS to input strings of any
specified length:

10 PRINT "TYPE A THREE LETTER WORD"
20 LETAS = ""

100 FORJ = 1TO3
110 IF INKEYgO " THEN GOTO 110
120 IF INKEYS = "" THEN GOTO 120
130 LET AS = AS +INKEYS
140 NEXT]
150 PRINT "YOUR WORD WAS"; AS

Although you can juggle with INKEYS to input strings of unspecified
length, this has little advantage over INPUT.

74

How About Numbers?
If you use your program above and type in 123, the result looks like
a number but is really the string '123' so you cannot do any maths
operations on it. Luckily, ZX81 BASIC provides a function which
turns suitable strings into numbers! Change and extend your
program like this:

150 PRINT,, "STRING AS", "VAL AS"
160 PRINT AS, VAL AS
170 GOTO 10

Try putting in all sorts of strings, including some like these:

'123' '4.5' '6 + 7' '89A'

You have now discovered most of the rules for VAL:

(1) If a string consists entirely of characters which can be used in
an arithmetical expression, VAL string will work out the
expression and produce the answer. Suitable characters are:

Numbers
Names of variables previously defined
Operators
Full stop
Functions
Brackets.

(2) Any other characters will stop the program with a C/n or 2/n
error code.

(3) You can keep a permanent record of VAL string by putting it
into a number variable:

LET A = VAL AS

ZX81 also provides another function which exactly reverses VAL,
namely STRS.

strS number = 'number'
STRS 567 = '567'

This seemed a logical place to mention STRS — we'll use it later on.

Here's a well-known program for you to write, using INKEYS and
VAL:

Exercise 22.1. Number guessing

Write a program to generate a random number between 10 and 99.
Ask the user to type in a guess, and then tell him whether the guess

75

is too low, too high or correct. With 1K of memory, you'll need to
limit the guesses to about eight.

We Learnt These in Chapter 22

Functions

INKEY# to allow a single character string to be input without
stopping the program.

VAL to change a suitable string into a number.
STR# to change a number into a string.

76

23______
Son of Graphics

In Chapter 17 we drew simple pictures by using PRINT with
graphics blocks in quotes. Each graphic block was made of four
small squares (pixels) which could be black, white or grey.

Plotting Points
We can use the statement PLOT X,Y to black in a single pixel
anywhere on the screen. Try this demonstration program:

20 PRINT “PLOT X,Y DEMO"
30 PRINT,, "0 TO 63 POINTS ALONG - THATS X"
40 PRINT,, “ AND 0 TO 43 POINTS UP - THATS Y"
50 PRINT,, “WHAT IS X (0 TO 63)? X=
60 INPUT X
70 PRINT X,„ "NOW Y (0TO43)?"
80 INPUT Y
90 CLS

100 PLOT X,Y
110 PRINT X; ",";Y
120 INPUT Ag
130 CLS
140 GOTO 50

If you run the program it should explain itself. Notice how the
PRINT position in line 110 is immediately after the PLOT position in
line 100.

The CLS in line 130 is a bit of a sledgehammer to remove one
point! We can take it out more delicately by using UNPLOT, the
reverse of PLOT.

130 UNPLOT X,Y

77

Notice how again the PRINT position follows right after the
UNPLOT position.

Plotting Lines

A single black blob is not a lot of use, but watch what happens when
we put it into a loop:

10 FOR J - 0 TO 63
20 PLOT J,0
90 NEXT J

The start of a picture frame! Now we need a bar along the top of the
screen. Can you work it out? That's right:

30 PLOT J,43

The rest of the frame is up to you:

Exercise 23.1. Vertical lines

Add four more lines to the present program to draw the two
verticals of the picture frame. There's a problem with your IK of
memory, by the way.

Oblique lines are not quite so successful, but let's see what we
can do:

10 FOR J = 0 TO 43
20 PLOT J,0
30 PLOT J,43
40 PLOT 0,J
50 PLOT 43,J
60 PLOT J,J
70 PLOT J,43—J

100 NEXT J

Put in lines 20 to 70 one by one, and run after each addition to
check which program line draws which line on the screen.

If you want, you can use PLOT in nested loops to blackout whole
slabs of the screen, though it's a little slow.

10 FORJ = 0TO63
20 FORK = 0TO41
30 PLOT J,K

78

40 NEXT K
50 NEXT J

We can wipe the whole screen as usual with:

60 CIS
However, if we halve the rectangle to release more memory, we
can wipe it out in a more leisurely way — the Danish Blue cheese
method:

10 LETK = 0
20 FORJ = 0TO43
30 FORK = 0TOK
40 PLOT J,K
50 NEXT K
60 NEXT J
70 LETX=RND*43
80 UNPLOT X, RND*(X+1)
90 GOTO 70

Mixing Print With Graphics

As we know, the PRINT position follows immediately after the last
PLOT or UNPLOT point, which can be inconvenient. Luckily ZX81
will let us print anywhere we like on the screen by using:

PRINT AT I ine number, column number; string or number

Line numbers go from 0 at the top of the screen to 21 at the bottom.
Column numbers are the same as TAB numbers, 0 to 31. Here is a
demonstration game to get you used to the PRINT AT positions:

10 PRINT TAB 7; "PRINT AT DEMO”
20 PAUSE 200

100 CLS
110 PRINT "PUT A FINGER ON THESE POINTS”
120 PAUSE 200
130 LET L = INT (RND*22)
140 LET C = INT (RND*32)
150 CLS
160 PRINT "PRINT AT L; C
170 PAUSE 400
180 PRINT AT L, C;
190 GOTO 120

Rememberthatany further printing follows right after the PRINT AT
item, according to the usual punctuation rules. If you want to go

79

back to the top of the screen, you'll have to use another PRINT AT.
PRINT AT is also useful for rubbingout bits of the screen — all you

need to do is to print spaces at the positions you want to rub out:

100 FOR J =0 TO 21
110 PRINT AT J J; J
120 NEXT J
200 PRINT AT 0, 4; “RUBBING OUT THE ODD NUMBERS"
210 FOR J-1 TO 21 STEP 2
220 PRINT AT J, J;" "
230 NEXT]

Here are some simple exercises using PLOT and PRINT AT:

Exercise 23.2. Visiting card

Write a program to print a black visiting card in the centre of the
screen, with your name and address in inverse letters.

Exercise 23.3. ‘On we go' subroutine

A very useful subroutine to stop the program until NEWLINE is
pressed. Print the prompt 'PRESS NEWLINE' at the bottom right of
the screen, put in an INPUT pause, then wipe the bottom line only
and RETURN.

Graphics with the ZX Printer

The simple graphics of Chapter 17, in which graphic block
arrangements are printed line by line, can be recorded on paper by
simply changing PRINT statements to LPRINT. On the other hand,
LPRINT AT will not work, it behaves more or less like LPRINT TAB.
If you think about it, PRINT AT may be asking the ZX81 to go back
along a line, or to move upto some line previously printed — the ZX
Printer cannot cope with this! Nor will PLOT produce any result
with the ZX Printer — what can we do to make a permanent record
of our beautiful graphics?

We met the answer in Chapter 15, simply use the keyword COPY,
either as a command or a statement, and the ZX Printer will make a
faithful copy on paper of the current screen contents — PLOT
points, PRINT AT items and all.

80

We Learnt These in Chapter 23

Statements

PLOT X,Y to black in a pixel at the coordinates X,Y.
UNPLOT X,Y to rub out the pixel at the coordinates X,Y.
PRINT AT line number, column number; to print an item at any

position on the screen, regardless of anything printed before.
COPY to make a permanent record on paper of the current

screen contents, including all graphics and PRINT AT items.

Anything else

Loops containing PLOT to draw lines and blocks on the screen.
PRINT AT line, column; " " to rub out sections of the screen.

81

24________
Playing with Strings

There is a theory that, given infinite time and paper, a set of
chimpanzees would eventually type the complete works of
Shakespeare. Let's try:

10 RAND
90 CLS

100 FORJ = 1TO80
200 FOR K= 1 TO INT (RND*8+1)
210 LET A = INT (RND*26 + 38)
220 PRINTCHRSA;
300 NEXT K
310 IF RND< 07 THEN PRINT
350 PRINT " "■
400 NEXT J
500 PRINT
510 PRINT,, “PRESS NEWLINE"
520 INPUT AS
530 GOTO 90

I suppose the theory is alright, but you'll need a lot of patience! The
important lines to look at are 210, which generates a random
number between 38 and 63, and line 220, which prints a new
function.

CHRS A is the character which has the code number A, and if you
look on page 182 of your operating manual, you will find that 38 to
63 are the code numbers for A to Z.

We can use CHRS to see every character in the ZX81 repertoire,
all 255 of them:

10 LETK = 0
20 FOR J- ITO 8

82

30 FORK=KTOK + 7
40 PRINT CHRj K;
50 NEXT K
60 PRINT,,
70 NEXT J
80 PRINT,/'PRESS NEWLINE"
90 INPUT AS

100 CLS
110 GOTO 20

You will see a whole mixture of graphic blocks, numbers, symbols,
letters, keywords, functions, and inverse characters. The second
page consists mostly of ?s — these are either unused characters or
commands like NEWLINE which print nothing on the screen.

Two more useful string functions are CODE and LEN, and this
program makes it pretty clear what they do:

10 PRINT "INPUT SOME WORDS"
20 PRINT "WS";TAB 10;"CODE WS";TAB 20;" LEN WS"
30 INPUT WS
40 PRINT,, WS;TAB 10;CODE WS;TAB 20;LEN WS
50 GOTO 30

Run the program and input words like APPLE, ANT, A, BEETLE,
BUN, B. Try words consisting of spaces, and also the empty string.
By now you will have discovered that CODE of a string gives 'the
code number of the first character in that string'. LEN of a string is
equal to 'the number of characters (including spaces) in the string'
— in other words, length of the string.

Chopping Up Strings
ZX81 has a simple but very useful way of slicing strings. As soon as a
string or a string variable is typed in, its characters are each
numbered, starting at 1, continuing 2, 3, . . ., and ending with the
last character which has the same number as LEN. For example:

LET Z$= "CAKE" LEN Z$ = 4
ZS(1) = "C" ZS(2) = "A" Z$(3) = "K" Z$(4) = "E"

We can slice out any characters we like from a string by using the
function:

string (m TO N)

Try it out with this program:

10 PRINT "SLICING SPORTSMAN"

83

20 LET AS = "SPORTSMAN"
100 PRINT "INPUT TWO NUMBERS, 1 TO 9"
110 PAUSE 300
120 CLS
130 INPUT M
140 INPUT N
150 PRINT,,"SPORTSMAN(";M;" TO ";N;") = ";AS (M TO N)
160 GOTO 130

If you input various pairs of numbers, you'll find that the first
number must not be less than 1, and the second number must not
be greater than 9 (LEN "SPORTSMAN" = 9).

You can if you wish chop out part of one string, and put into
another string variable for future use. Type these commands, after
running the program above:

LET BS = AS (2 TO 8)
PRINT AS,BS

You may only require a single character from your original string,
and in this case you can drop the TO. Try typing a few commands
like:

PRINT AS(1) PRINT AS(2) PRINT AS(9)

Again, the lower limit is 1 and the upper limit is LEN AS. Let's use
this method to print your choice of word in all sorts of ways:

10 PRINT "INPUT ANY WORD"
20 INPUT WS
30 CLS

100 FOR J = 1 TO LEN WS
110 PRINT WS(J);"
120 NEXT J

That was straightforward, but now change line 100 to:

100 FOR J = LEN WS TO 1 STEP —1

And now let's print your word in inverse letters. We make use of the
fact that the CODE of an inverse letter is 128 higher than the CODE
of the original letter:

110 PRINT TAB 1;CHRS (CODE WS(J) + 128)

Sorry, we've got it upside down now! Add these lines to march the
letters into their correct places:

200 FOR J = 1 TO LEN WS
210 FORK = 0TOJ—1

84

220 PRINT AT LEN Wg-J + K,K+1 ;CHR# (CODE Wg(J) + 128)
230 PRINT AT LEN W$-J + K—1,K;" "
240 NEXTK
250 NEXT J

Here's an exercise in which you can try out slicing for yourself:

Exercise 24.1. Ants

Ants are words which begin with 'ANT' or end with 'ANT'. Write a
program which asks for words to be input, checks them, lists them
on the screen if they are ants, or rejects them if they are not.

We Learnt These in Chapter 24

Functions

CHR$ n , equal to the character which has the code number n.
CODE s , equal to the code number of the first character in string

s.
LEN s , equal to the number of characters in string s.
s (m TO n), equal to a slice from string s, from the m th character

to the n th character.
s (n) , equal to the n th character from string s.

85

25_______
In Glorious Array

Dummy Variables

We have learnt how to do all sorts of things to numbers and strings.
Sometimes we need to keep a record of the original number or
string, using a dummy variable, so that we can refer to it later.
Here's a simple example.

10 LETBS = "”
100 PRINT "TYPE A WORD”
110 INPUT AS
120 CLS
130 PRINT " YOU TYPED ";AS
140 IF AS = BS THEN GOTO 300
200 PRINT "THATS A CHANGE”
210 PRINT "IT WAS ";BS;" LAST TIME”
220 GOTO 400
300 PRINT "BORING - SAME AS LAST TIME”
400 LETBS = AS
410 GOTO 100

We have an INPUT loop round lines 100 to 410, and variable AS is
changed each time we go round the loop. However, in line 400 we
put AS into a dummy variable BS, so that we can compare this with
the new AS next time round. We can do exactly the same with
number variables, of course.

Arrays of Numbers

We know howto keep a permanent record of one number by giving
it a variable name. Now suppose we want to keepa record ofasetof

86

numbers which have something in common — for example, in a
dice throwing experiment, the number of ones, twos, threes, fours,
fives and sixes we have thrown. We can do this by setting upas/ng/e
dimension array, using the statement DIM:

10 DIM D(6)

If we run this program, we have now created six variables:

D(1) 0(2) D(3) D(4) D(5) D(6)

and each one of them has been set to zero. Check this by typing
commands like: PRINT D(3).

An array must have a name consisting of a single letter. It can have
as many members as you like, subject to available memory, and
each member has a different subscript number in brackets, starting
with 1, to distinguish it from all the others. Note that D(0) does not
exist.

On with the program — we'll randomise and then throw the dice
sixty times:

20 RAND
100 FORJ = 1TO60
110 LET T= INT (RND*6+1)
200 NEXT]

Now for the cunning bit —this is where the subscripts come in. If we
throw a five, we need to add one on to D(5), the total of fives
thrown.

120 LET D(T) = D(T) + 1

If T happens to be a five, then this is the same as saying:

LET D(5) = D(5) + 1

The next T might be three, and we would add one on to 0(3), and so
on. Now we need to print out our results:

90 PRINT “WAIT”
300 PRINT "60 DICE THROWS",,,,
310 FORJ = 1TO6
320 PRINT TAB 5;D(J);"
330 NEXT]

Finally we can stop to display the results, and then back to DIM in
line 10 to reset all the array variables to zero and start again:

400 PRINT "PRESS N/L FOR MORE"
410 INPUT AS
420 GOTO 10

87

Later on, with moving graphics, we'll rewrite this program to give a
compulsive race game.

Multi-Dimension Arrays
Imagine that we are letting out fifteen caravans to holidaymakers in
the month of August. We arrange the vans in three rows, and each
row has five vans in it.

1 2 3 4 5

Columns

Rows 2 B

3

We can name a van uniquely by giving its ROW and then its
COLUMN. For example, van A is (1,2) — ROW 1 and COLUMN 2.
Van B is (2,4) and so on.
ZX81 will do exactly the same operation using DIM:

10 DIM V(3,5)

Run the program, this time we have set up 15 variables, arranged
like the caravans above in a 3x5 array, each one set to zero:

V(1,1) = 0 V(1,2) = 0 and so on.

Now we can write a caravan booking program, if we say that:

V(m,n) = 0 means a vacant van

and V(m,n) = 1 means a booked van.

20 PRINT "WHICH VAN DO YOU WANT?"
30 PRINT„"WHICH ROW (1 TO 3)?
40 INPUT R
50 PRINT R
60 PRINT "WHICH COLUMN (1 TO 5)?";
70 INPUT C
80 PRINT C
90 PAUSE 200

100 IF V(R,C) = 1 THEN GOTO 200

88

110 PRINT,,"VAN (";R;",";C;") IS FREE"
120 LETV(R,C) = 1
130 PRINT,,"! HAVE BOOKED IT FOR YOU"
140 PRINT„"NEXT CUSTOMER PLEASE PRESS N/L"
150 GOTO 220 .
200 PRINT,, "SORRY, VAN (";R;",";C;") IS TAKEN"
210 PRINT„"PRESS N/L TO TRY ANOTHER"
220 INPUT AS
230 CLS
240 GOTO 20

We are not limited to two dimensions, except by our available
memory. Each of the caravans could be let out for each of the
twelve months, needing a 3x5x12 array. This program would start

10 DIMV(3,5,12)

but you will have to write the rest!
Here is an array problem for you to try:

Exercise 25.1. Simple cows and bulls

This is the well-known game in which you have to guess a four-digit
number. After your guess you are told how many of the digits you
guessed exactly right (bulls). The general scheme is this:

Generate four random digits between 1 and 6 and put them in a
single dimension array.

Ask the player to guess the number.
Input his guess as a string variable.
Compare the digits of his guess, one by one, with the digits in your

array (remember VAL!).
Tell him how many bulls he scored.

We Learnt These in Chapter 25

Statements

DIM to reserve space for an array of numbers and to set them all
to zero.
e.g. DIM A(n) for a single-dimension array with n members.

DIM A(m,n) for a two-dimension array with mxn
members.

89

Anything else

Dummy variables to provide a memory for variables which would
otherwise be lost.

90

26______
Arrays of Strings

We found out about arrays of numbers in the last chapter. Arrays of
strings are set up in much the same way. We already know that a
string variable is equivalent to a single-dimension string of
characters. For instance:

20 LET AS = "CAT"

Run the program and type these commands:

PRINT AS(1) (this gives C)
PRINT AS(2) (this gives A)
PRINT AS(3) (this gives T)

If we put in a DIM statement:

10 DIMAS(5)

we have merely reserved space for one five-character string called
AS, set all the characters to empty spaces, and then inserted the
string "CAT". We can check this by adding:

30 FORJ = 1 TO 3
40 FORK=1TO5
50 PRINT AS(K)
60 NEXT K
70 NEXT]

There are five spaces available, but we have only filled three of
them. Now we'll change the DIM statement — better type NEW
and start again.

10 DIM BS(7,5)

91

This time we have reserved space for an array of seven strings, each
one of five characters as before. Let's start putting in some actual
strings:

20 LET B$(1) = "CAT"
30 LET B$(2) = "DOG"
40 LET B$(4) = "MOUSE"

and then printing them out:

100 FORJ = 1TO7
110 PRINT BS(J);
120 NEXT J

Notice that in defining members of this string array (lines 20 to 40),
and in using them (line 110), we only type one subscript number, to
say which of the strings we are talking about. The second subscript
number is only used once — in the DIM statement — to fix the
maximum length of each member of the array. What happens if we
try to put in a longer string than we have allowed for?

50 LET B$(5) = "ELEPHANT"

ZX81 makes no objection, it merely refuses to print any characters
after the first five! If you really need more than "ELEPH", you'll
need to change the DIM statement. Maybe this is why the code on
my driving licence refers to a fellow called "NORMA"!

Multi-Dimension String Arrays

Just as easy, but a bit heavy on memory. Type the commands NEW
and then DIM C$(4,3,8). This makes room for an array of 4x3
strings. Once again, the last subscript number is to fix the maximum
length of the strings, and only appears in the DIM statement. When
defining or using members of the array, we only use the first two
numbers.

LET CS(2,3) = "ELEPHANT"
PRINT CS(2,3)

Naming String Arrays

A string array may have any single letter name, followed by i and
then the subscript numbers. A name like A$, for instance, can only

92

be used for one string array. If you write a second DIM A$(m,n,..)
you simply cancel the original DIM and replace it with this new one.
But you can, if you want to, use all of these variables in a single
program:

A (number variable) AS (string variable)
A (n,. . .) (number array) AS(n,. . .) (string array)

Chopping Members of a String Array
Assuming that you still have your C$(2,3) = "ELEPHANT" in
memory, try typing these commands:

PRINT CS(2,3,1)
PRINT CS(2,3,2)
PRINT CS(2,3,8)

So obviously if you type in one extra subscript number, you simply
pull that particular character out of the string variable. If you want
larger slices, do it like this:

PRINT CS(2,3)(2 TO 7) or PRINT CS(2,3,2 to 7)

Now for some exercises using string arrays:

Exercise 26.1. Test results

You have a class of six children — puttheir names into a string array.
Write a program which asks for:

The name of the test.
The maximum possible mark.
Each child's mark (use a number array).

The output should consist of a title and a list of names and
percentages.

Exercise 26.2. One-armed bandit

Set up a string array containing six fruit machine items (bell, lemon,
etc). Generate three random numbers and use these to print three
of the fruits across the screen. Checkfor a jackpot — three fruits the
same.

93

We Learnt These in Chapter 26

Statements

DIM A$(m,n. . .) to set single or multi-dimension string arrays.
The last (extra) subscript number fixes the maximum length
of each member of the array.

Anything else

Slicing out parts of string array members.

94

27____
Very Logical

We started this in Chapter 12 with IF . . . THEN — now let's take it a
little further. Here is a picture ofa water tank with some pretty weird
plumbing. It has four water taps labelled AS, BS, Xi and Z.i.

It's a simple chemical engineering problem. We have to write a
program to warn us when water is running away through an open
tap. We'll deal with Ai first:

10 PRINT "SET YOU R TAPS NOW",,"O = OPEN S = SHUT"
20 PRINT„"AS is?
30 INPUT AS
40 PRINT AS

150 IF AS= "O" THEN GOTO 1000
200 PRINT "ALL OK"
210 PRINT AT 21,0;"PRESS N/L FOR MORE OR S TO STOP"

95

220 INPUT XS
230 IF XS = "S" THEN STOP
240 CLS
250 GOTO 10

1000 PRINT
1010 FORJ = 1TO5
1020 PRINT "DING DONG"
1030 NEXT J
1040 PRINT,/'WATER RUNNING OUT"
1050 GOTO 210

Run the program, open and close AS, and make sure the alarm is
working properly. Now for the BS tap.

50 PRINT "BS IS?
60 INPUT BS
70 PRINT BS

Now we need a line like 150 to test whether BS is open, but wait a
bit . . . we can include BS in line 150:

150 IF AS = "0" OR BS="O" THEN GOTO 1000

Did it work? Sure did! The alarm goes off if either AS or BS is left
open. Two more taps to go now:

80 PRINT "YS IS?
90 INPUT YS

100 PRINT YS
110 PRINT "ZS IS?
120 INPUT ZS
130 PRINT ZS

We'll need to think hard about this — if either one of taps YSand
ZS is closed then we're still holding water. We only need the alarm if
they are both open, so:

160 IF YS="0" AND ZS="O" THEN GOTO 1000

Run the program again, and open and shut all the taps to test it out
thoroughly. Then replace lines 150 and 160 with one single
gloriously logical line:

150 IF AS = "0" OR BS = "0" OR YS = "0" AND ZS = "0" THEN
GOTO 1000

which works just as well. There is a flowchart for this program
shown on the next page.

96

Priorities

These long logical statements need clear thinking. They depend on
the fact that the ZX81 tests the statements in a specific order, giving

97

AND priority over OR. As with arithmetical expressions, we can
change the priority, or give it emphasis, by adding brackets. For
example this line:

150 IF A$="0" OR B$ = "0" OR (Yi="0" ANDZg="0")
THEN GOTO 1000

has exactly the same effect as before, but it is easier to understand.
This is the time to mention that ZX81 has logical NOT available,

though it seems to be superfluous because:

IF NOT A = B is the same as IF AO B
IF NOT X> = Y is the same as IF X<Y
and so on.

Also there are logical values which go with AND, OR, NOT —
these are dealt with in Chapter 10 of the ZX81 operating manual.
They should be considered as time- and memory-savers for
advanced programmers, they do not do anything which cannot be
done with statements already covered in this book.

Now try out your own logic:

Exercise 27.1. Water tank mark 2

We've scrapped the old plumbing system — always thought it was
rubbish! The tank is now fitted with a single branched outlet pipe
fitted with three taps A$, B$, and Ci. Change the input lines to fit
these taps, and then type in this new logic line:

150 IF Ag="0" AND (Bg= "0” OR Cg="0") THEN GOTO
1000

Run the program, open and shut the various taps, and deduce the
new layout of pipes and taps.

We Learnt These in Chapter 27

Logical statements AND, OR to use with the IF . . . THEN
statement.

AND has priority over OR.
Brackets to change or emphasise priority.

98

28_________
Graphics Ride Again!

This chapter is concerned with moving graphics, which must be run
in SLOW mode on the ZX81. Users of ZX80s will have to skip on to
the next chapter.

Flashing Lights
If we want to emphasise special words on the screen, we can use
inverse graphics, or flash the words, or both as in this subroutine:

100 GOSUB1000
900 STOP

1000 REM * * CORRECT ANSWER
1010 FORJ = 1TO20
1050 PRINT AT 15,20;"RIGHT" (inverse characters)
1100 PRINT AT 15,20;“ " (five spaces)
1200 NEXT]

As it stands, this program gives a fast flickering effect, it needs
slowing down. Either insert PAUSE statements, or for a really
smooth display use empty loops:

1060 FORK=1TO10
1070 NEXTK
1110 FOR K=1 TO 10
1120 NEXTK

Bouncing Balls
For a start we'll draw bits of floor and ceiling for the ball to bounce
between:

100 FORJ = 20TO40

99

110 PLOT J,1
120 PLOT J,42
130 NEXT J

Next we'll print the ball, fairly near the ceiling:

10 LETV=1
200 PRINT AT V,15;"0"

Now to move the ball down the screen:

20 LETVV-1
150 LETV = V + VV
400 GOTO 150

A nasty looking trail of Os — we'll have to rub them out as we go.

300 PRINT AT V,15;'"'

A bit better that time, but the ball seems to be made of lead! To
make it bounce we must change the sign ofVV at the floor, and then
again at the ceiling:

250 IF V = 20 OR V= 1 THEN LET VV = -VV

Success! It will bounce until you switch off or press BREAK.

Now we'll extend the program into two dimensions, to give the
rudiments of a TV game. The idea is the same, but this time we are
changing both the line number and the column number each time
round the loop. We shall have to bounce inside a small rectangle to
avoid running out of memory, and we start the ball at a random
position:

10 LETVV=1
20 LETHH = 1
30 LET V = INT (RND * 13 + 1)
40 LET H = INT (RND * 19+1)

210 FORJ = 1TO42
220 PLOT J,42
230 PLOT J, 13
240 NEXT]
250 FOR J = 14 TO 41
260 PLOT 1,J
270 PLOT 42,J
280 NEXT J
300 LETH = H + HH
310 LETV = V + VV
320 PRINT AT V,H;"O"
330 IF H=20OR H = 1 THEN LET HH = -HH

100

340 IF V= 14 OR V= 1 THEN LET VV = —VV
350 PRINT AT V,H;" "
360 GOTO 300

Circling Satellites

This program prints a star in the middle of the screen, and then uses
PLOT to put a planet into orbit:

10 PRINT “RADIUS? 3 UP TO 20”
20 INPUT R
30 PRINT AT 11,15;“*"
40 LETA = 0

100 UNPLOT 30+R * SIN A,20+R * COS A
110 LETA = A+.2
120 PLOT 30+R * SIN A,20+R * COS A
130 GOTO 100

This diagram shows you how the trigonometry works:

If you delete lines 100 and 110 and add these lines:

40 FOR A = 0 TO 2 * PI STEP .05
130 NEXT A

your program will draw a circle (of sorts).

101

Darting Arrows

Here is a three-line program which pushes an arrow across the
screen:

100 FOR J =0 TO 27
110 PRINT AT 15,J;" Q " JAB J;"HKK"TAB J;" GD "
VMb NEXT]

The graphics are hard to sort out, but this diagram will help:

TAB J to print an item exactly under a previous item printed at
position J on the line. (2) The use of a space at the beginning of the
three literal strings which make up the arrow — these automatically
rub out the remains of previous arrows as we move across the
screen.

Trundling Tortoises

This combines the dice-throwing program from Chapter 25, with
the arrow-shooting technique above, to push five tortoises across
the screen.

10 RAND
20 DIM D(5)

100 CLS
110 PRINT "ZX81 TORTOISE RACE"
200 LET T= INT (RND * 5+1)
210 LET D(T) = D(T) + 1
310 PRINT ATT * 3,D(T);" MJ "JAB D(T);"GB " J;" BB";

TAB D(T);"BB"
320 IF D(T)<27 THEN GOTO 200
400 PRINT AT21,20;"NO. "J;" WINS"
410 INPUT AS
420 RUN

A tortoise is printed and moved across just like the arrow (but not
quite so fast). This diagram will make the graphics clearer:

102

PRINT ATT * 3,D(T)

TAB D(T) 1
TAB D(T)

Notice how the tails leave a trail of dashes as the tortoises move. If
you don't like this, you will have to include a space just ahead of the
tail, and shorten the race by one character.
Perhaps you would like to try your own hand at some graphics
problems.

Exercise 28.1. Flasher

Write a subroutine to reward the winner of one of your games —
flash the 'WINNER' at the bottom right of the screen ten times,
leaving it switched on at the end.

Exercise 28.2. Rubber ball

We saw a program for an everlastingly bouncing ball. Now write a
program for a real ball, bouncing vertically, the bounces gradually
getting smaller, and finally coming to rest on the floor. This is a hard
one — you will need an inner loop to bounce the ball up and down
within certain limits, and an outer loop to gradually reduce the
upper limit and make the bounces smaller.

Exercise 28.3. Lunar module

We made arrows and tortoises move across the screen. Your
problem is to design a little moon-landing module — use any of the
characters you like — and move it down the screen onto the moon's
surface. It will look better if it is seen to decelerate as it descends!

103

29_______
What a Memory!

Binary Arithmetic

We all know that computers work in binary (base 2) arithmetic. Like
most microcomputers, the ZX81 contains a large number of
memory cells or bytes, each containing an 8-bit number. Here's
how to make a working model byte:

Cut a post card in half, longways, mark it out like this and cut
along the dashed lines:

1 1 1 1 1 1 1 1

128 64 32 16 8

4
L——

2

1

Now fold up all the eight tabs to cover the 1s, and write Os on the
exposed faces like this:

0 0 0 0 0 0 0 0

Each bit in your byte can now have the value 0 (folded up) or 1
(hanging down). The decimal value of the number in the byte is
found by adding the decimal numbers hanging down:

64 8 4 1

0 1 0 0 1 1 0 1

104

Here the binary number in the byte is 01001101, equal to the
decimal number 64 + 8 + 4+1 =77.

The smallest decimal number in a byte is of course 0 (all folded
up) and the largest is 255 (all hanging down). So the memory cells of
the ZX81 are full of numbers between 0 and 255, and these may
represent numbers, characters, instructions, and so on. Larger
numbers than 255 have to go into two or more bytes, and when we
define a variable by:

LET A=1

the ZX81 sets aside five bytes to contain all possible information on
A (size, position of decimal point, sign) plus whatever bytes are
needed for the variable name.

ZX81 Memories

The ZX81 memory comes in two parts. The ROM (read only
memory) consists of 8K bytes (1 K = 210= 1024 bytes), which contain
all the fixed instructions needed to convert BASIC into binary code,
and to tell the ZX81 what to do at all times. ROM is permanent, you
can find out what is in any byte of ROM but you cannot change it.

The second part is called RAM (random access memory), which
consists of 1K byte (1024 bytes numbered from 16384 to 17407).
RAM contains all the items which change from program to program
— the system variables, your actual program, the display file and the
number and string variables. You can find out the contents of any
RAM byte, and you can also change it.

To make full use of your ZX81 you will need the 16K RAM pack.
This is a box the size of a pack of cigarettes which clips onto the
edge connector at the back of the ZX81. This increases your RAM to
a total of 16K or 16383 bytes (see Appendix 5).

What's In that Byte?

To find thecontentsof a byte of ROM or RAM which has the address
number n, we use the function PEEK n. Here is an example:

100 LET F=PEEK 16396 + 256 * PEEK 16397
110 PRINT "DISPLAY FILE STARTS","AT BYTE ";F

What is happening? Well, the first slice of RAM contains the system
variables — it is always a fixed size from 16384 up to 16509. The next
slice contains your program, which of course can vary in size,
followed immediately by the display file (the record of what will be

105

printed on the screen when the program stops). One of the system
variables is the starting address of the display file — the ZX81 needs
to know this. Being a five-digit number it is contained in two bytes,
16396 and 16397.

Run the program, note the start of the display file, and then add
another line of program, say:

120 PRINT

If you now run again, you will find that the display file has moved
along six bytes, the amount of space needed for the new program
line. Now, let's find out what is actually in the first ten bytes of the
display file.

130 FOR J = 0 TO 9
140 PRINT PEEK F + J
150 NEXT J

Well, I did warn you that bytes of ROM and RAM simply contain
numbers up to 255! Who can remember the function to turn codes
into characters? Well done!

140 PRINT CHRg PEEK (F + J)

I did say that we could change the contents of any byte of RAM — it
is not to be recommended unless you are sure you know what you
are doing. The statement is:

POKE m,n

m is the address of the byte we are changing
n is the newvalue weare putting in (between 0 and 255 of course).
Let's poke an asterisk (code 23) into the top line of the screen

display:

125 POKE F + 5,23

Run the program again and make sure that it worked. You are well
on the way to finding out how the ZX81 organises its memory!

Advanced Programming

You can write good BASIC programs without ever using a PEEK or a
POKE, but eventually you will find that they let you do things which
are otherwise impossible. You will also want to use the USR
function to write machine code routines — they run faster and use
less memory than BASIC. You will need to read your ZX81
operating manual very carefully (Chapters 25 to 28), and buy a
more advanced book on programming. Good luck!

106

We Learnt These in Chapter 29
Statements

POKE m,n to put the value n into the byte at address m.

Functions

PEEK m gives the contents of byte m as a decimal number.

Anything else

ZX81 memory, 8K of ROM, 1K of RAM plus plug-in expansion to
give 16K total RAM.

107

30___________
Debugging Your Programs

You are doing well if you can write a program of any length which
runs properly first time. You are more likely to find that there are
errors or 'bugs' to be removed.

Syntax Errors

Generally the ZX81 will not allow this kind of mistake. Leave out a
quote or a bracket, mix up string and number variables, or commit
any other sin in syntax, and the ZX81 will put up the Ecursor and
stop the line from being entered. Make sure your lines do enter, by
the way, since you can waste a lot of time typing a new line onto the
end of one with a syntax error.

Errors which Stop the Program

Even if every line has entered correctly, the program may stop
running because of some other error. Here the ZX81 helps by
printing a report code showing the line number and the type of
error that caused the crash. These codes are all listed in Appendix B
ofyour ZX81 operating manual, and often it is obvious what must be
done to put things right. Here are a few where the remedy is not
quite so obvious.

Code 2/n. Undefined variable

All variables must be defined by one of these statements:

LET INPUT FOR (loop control variables) DIM (arrays)

108

Code 4/n. No more room in memory

Common mishap with 1K of RAM which does not go very far,
especially if you are using graphics and arrays. Here are some ideas
for saving memory, remembering that your RAM is used up by your
program and also by your variables and display file.

(1) Cut down the number of variables. Shorten arrays, cut out
surplus dummy variables, use the same name for more than
one variable in different parts of the program if possible.

(2) Shorten literal strings and string variables, use abbreviations.
(3) Remove REM lines.
(4) Look out for duplicated operations — put them into loops or

subroutines.
(5) Reduce the amount of screen used for printed output and

graphics display.
(6) Consider splitting the program — remember that variables

generated in one part can be used in another part.
(7) Start saving for your 16K RAM pack!

Code 5/n. Screen full

CONT clears the screen and lets your program continue. In the long
run you'll have to tidy things up by reducing the output, or inserting
a pause followed by CLS, or using SCROLL.

Errors Which Do Not Stop the Program

Programs often appear to run successfully, but print out rubbish.
Remember the old saying that there are no bad computers, only
bad programs. Sometimes it's clear that an output is not sensible, at
other times it's not so obvious and you must check carefully. Here
are some ideas:

(1) Check your program by putting in data with a known
answer.

(2) Check your answer with a hand calculator.
(3) Look for punctuation errors when you are having trouble

with tables of results or graphics.
(4) Try out conditional statements by putting in data which

does, then does not, satisfy the condition.
(5) Follow the course of your loops (especially nested loops)

carefully, preferably using a flowchart.

109

(6) Put in temporary PRINT lines to print the value of your
variables at different points in the program.

(7) Break up your program with temporary STOP lines and
check the different parts separately. Use command PRINT
to look at your variables, then CONT to go on with the
program.

(8) It may be useful to use CLEAR, as command or statement, to
delete all variables before putting in new values of your
choice.

(9) Check later parts of your program by using RUN n or GOTO
n to start running your program at line n. Remember that
RUN clears all variables, GOTO does not.

110

Appendix 1
ZX81 BASIC in 8K ROM

A complete list of all the instructions in BASIC available from the
ZX81 keyboard.

s represents a literal string within quotes, or a string
variable.

n, m, p represent numbers, variables or expressions.
Where whole numbers are required for n, m, p (as
in PLOT n,m) the ZX81 rounds off to the nearest
whole number (e.g. 10.4 rounded to 10, 10.6 to
11, and 10.5 to 11).

Commands Used in Writing and Editing Programs

EDIT brings a line (indicated by the current line pointer)
to the bottom of the screen for editing, and deletes
anything already on the bottom of the screen.

O O
0 0

move the current line pointer one line up or down,
move the cursor one character to the left or right,
without affecting text.

FUNCTION changes the cursor to EL The next key pressed
puts the corresponding function on the screen and
returns the cursor to [EL

GRAPHICS changes the cursor to £2, to obtain graphic blocks
and inverses of letters, numbers and some other
characters, for use in strings. Press GRAPHICS
again to return cursor to [EL

LIST displays as much program as possible starting with
the first line, and puts the current line pointer
above the first line.

LIST n displays as much program as possible starting with

111

line n and puts the current line pointer at line n.
NEWLINE (1) transfers a numbered and valid line from the

bottom of the screen into the program.
(2) makes the ZX81 execute any command typed

on the bottom of the screen.
(3) clears the screen after a run and restores

previous listing of program.
RUBOUT deletes the character or keyword to the left of the

cursor.
SHIFT pressing SHIFT plus any other key returns the

character printed on that key in red.

System Commands
Keyword instructions which are not part of the program, but are
keyed in and executed once with NEWLINE. ZX81 accepts any
keyword as a command, but INPUT gives an error 0/8 and some
others don't often make sense. All commands except BREAK, STOP
and COPY clear the screen before they are executed.

BREAK (1) stops the ZX81 while it is working. Report code
shows where the program stopped, and any
output is displayed.

(2) stops the ZX81 during LOAD or SAVE.
CLEAR
CONT

deletes all variables.
restarts a program after BREAK, STOP or a screen
full error.

FAST changes the ZX81 to FAST mode (4 x SLOW) in
which the screen is blank while the screen is
working. This is the only mode possible with ZX80.

GOTO n starts running the program at line n, without
deleting any variables.

LET
LOAD s

defines a variable.
sends a program titled s from tape into ZX81
memory, deleting any existing program.

NEW deletes the existing program plus variables in ZX81
memory.

POKE m,n puts the value n (0 to 255) into the memory address

PRINT
m.
prints on the screen whatever follows the PRINT
command.

RUN deletes all variables and starts the program at the
first line.

RUN n deletes all variables and starts the program at line
n.

112

SAVE s sends a program titled s from the ZX81 memory
onto tape for long term storage.

SLOW changes the ZX81 from FAST mode to SLOW, in
which the ZX81 displays all its output while it is
working. This is the mode obtained when the ZX81
is switched on, but is not possible on the ZX80.

STOP gets the ZX81 out of an INPUT loop when typed as
INPUT. Quotes must be rubbed out first in a string
INPUT loop.

Program Statements
Keyword instructions which form part of the program. Although the
ZX81 will accept any keyword in this way, CONT and NEW do not
often make sense.

CLEAR
. CLS

DIM A(n)

deletes all variables.
clears the screen.
sets up a single-dimension numeric
array A(1), A(2), . . . A(n) and sets each
member to 0.

DIM A(nb n2, . . . nQ sets up a multi-dimension numeric
array and sets each member to (b.

DIM BS (n,m) sets up a single-dimension array of
strings, each having a maximum of m
characters, BS (1), B$(2), . . . B$(n) and
sets each member to a string of m
spaces.

DIM Bj (nb n2, . . . n^, m) sets up a multi-dimension array of

FAST

strings containing a maximum of m
characters each, and sets each member
to a string of m spaces.
changes the ZX81 to FAST mode (see
command FAST).

- FOR J-n TO m sets up a FOR . . . NEXT loop. J is set

NEXT J
initially at n, and increased by 1 after
each circuit. When J>m the loop is
ended and the main program
continues. The loop is entered n-m +1
times (once only if m< n), and the final
value of J is m +1.

FOR J = n TO m STEP p modifies the FOR . . . NEXT loop so
that J is increased by p after each
circuit. If required p may be negative,
with m<n.

113

GOSUB n jumps to a subroutine at line n,
continues from there until RETURN is
reached, then jumps back to the line
following GOSUB n.

GOTO n jumps to line n of the program and
continues from there.

IF condition/
THEN statement

conditional statement, IF the condition
is met THEN the statement (any
keyword) is executed. If the condition
is not met, the program continues at
the line following.

INPUT stops the program so that the user can
input a value to a numeric or string
variable.

LET assigns a value to a numeric or a string
variable.

PAUSE n stops the program and displays any
output for n/50 seconds, or until any
key is pressed. If n> 32767 the pause
lasts indefinitely until any key is
pressed.

PLOT m,n Blacks in a single pixel (| character) on
the screen at the position'm along and
n up'. m = 0 to 63 and n = 0 to 43
inclusive. The next PRINT position is
immediately after this pixel.

POKE m,n puts the value n (0 to 255) into the
memory address m.

PRINT prints whatever follows PRINT
(number, numeric or string variable,
expression, literal string) at the current
PRINT position on the screen.

PRINT AT m,n; prints whatever follows PRINT, at a
position m lines down and n characters
along, regardless of the current PRINT
position.

PRINT TAB n; moves the PRINT position to the n th
character on the current line (or on the
next line if the present PRINT
position>n), and whatever follows
PRINT is printed there.

PRINT s(m TOn) prints part of the string s, from the m th
to the n th character. If m or n is
omitted, then the first or last character
is assumed.

114

RAND sets a random number as a seed for
future RND expressions.

REM indicates a remark, to be ignored by the
ZX81.

RETURN
RUN and RUN n

see GOSUB.
deletes all variables and restarts the
program at the beginning or at line n.

SCROLL moves the screen contents up one
line, and sets the PRINT position at the
beginning of the bottom line.

STEP
SLOW

see FOR . . . NEXT . . . STEP
changes the ZX81 to SLOW mode (see
command SLOW).

STOP stops the program, and any output up
to that point is displayed. Command
CONT restarts program.

UNPLOT m,n exactly like PLOT, except that
UNPLOT un-blacks a single pixel on
the screen.

Commands/Statements for use With Printer

COPY
LLIST
LLIST n

prints a copy of the screen display.
prints a list of the current program.
prints a list of the current program, starting at line

LPRINT
n.
prints whatever follows LPRINT.

Numeric Functions

ABS n
ARCCOS n
ARCSIN n
ARCTAN n
COS n
EXP n
INT n
LN n
PEEK n
PI (orn)
RND
SCN n

the absolute value of n (with sign removed).
the angle (in radians) which has the cosine n.
the angle (in radians) which has the sine n.
the angle (in radians) which has the tangent n.
the cosine of n (angle in radians).
en (the natural antilog of n).
the integer part of n.
the natural log of n (base e).
the value currently stored at memory address n.
3.14159 . . .
a pseudo-random number between 0 and 1.
the sign portion of n. If n positive SGN n = 1, if n = 0
SGN n = 0, if n negative SGN n = -1.

115

SIN n
SQR n
TAN n
USR n

the sine of n (angle in radians).
the square root of n.
the tangent of n (angle in radians).
calls the machine code subroutine at address n.

String-Handling Functions
CHRS n the character which has the code n (n between 0

and 255 inclusive).
CODE s
INKEYS

the code number of the first character of s.
reads the whole keyboard. INKEYS is a single
character corresponding to a key pressed, or the
null string if no key is pressed.

LEN s
STR# n

the length (number of characters) of the string s.
converts the number n to an apparently identical
string 'n'.

VALs converts the string s, if possible, to a number or an
expression which is evaluated as a number.

Logical Operators
NOT
AND
OR

used with IF in conditional statements.

Arithmetic Operators
n**m
—n
n*m
n/m
n + m
n—m

n raised to the power of m.
negatives the value of n.
n times m.
n divided by m.
n plus m.
n minus m.

Relational Operators

Used to compare two numbers, variables or expressions. = is also
used with LET to assign a value to a variable.

n = m
n< m

n equals m.
n is less than m.

116

n>m n is greater than m.
n< = m n is less than or equal to m.
n>=m n is greater than or equal to m.
nOm n is not equal to m.

NOT can be used with any of these, e.g. NOT n = m is the same as
nOm.

Punctuation
; instruction to print the next PRINT item immediately

following the item before;
, instruction to move to the beginning of the next PRINT

zone, and print the next item there. Each line on the
screen is divided into two equal PRINT zones.

" marks the beginning and end of a literal string or a string
INPUT, or for defining a string variable.
used as a decimal point.

“ " a picture of a quotation mark for use inside strings.
() used to change the priority in a numerical expression or

a logical statement.

With the exception of “ all the above (as well as : and ?), may be
used inside strings.

117

Appendix 2
Glossary of Terms

Address The number which
identifies a byte of memory.

Back-up storage Some
method of long term storage
of programs and variables,
e.g. a cassette recorder.

BASIC Originally designed for
beginners, now one of the
most widely used high level
languages for micro
computers.

Binary digit (Bit) One digit
from a binary number; can
only be (5 or 1.

Binary number A number in
the binary system (base 2),
where all the digits are 0 or
1, instead of 0 to 9 as in the
decimal (base 10) system.

Bug An error in a program
which prevents it from doing
what is required of it.

Byte A binary number 8 bits
long, the normal storage unit
in a microcomputer
memory.

Character Any item which
can be stored in one byte
and printed on the screen,
e.g. A 1 ; PRINT are all

ZX81 characters.
Character codes The single

byte number which identifies
each character — these may
vary from one computer to
another.

Command An instruction
which does not form part of
the program, but which
makes the computer take
action of some kind.

Concatenation Joining two or
more strings together like
links in a chain.

Conditional statement A
statement which is carried
out only if a given condition
is satisfied.

Crash The program stops
running because of a
program or data error.

Debug To find and remove
errors from a program.

Edit To select and alter any
chosen line in a program.

Enter To transfer a program
line, or a command, or some
data from the keyboard to
the computer (by pressing
NEWLINE on theZX81).

118

Empty string A string
containing no characters at
all (also called a null string).

Firmware Sometimes used to
denote the interpeter
program, and other
permanent programs found
in ROM.

Flowchart A representation in
diagrammatic form of a
series of connected
operations to be done in a
specified sequence.

Function Some specified
operation which is carried
out on the number or string
which follows.

Hardware The physical parts
of a computer and the
surrounding equipment, as
opposed to programs.

High level language
Programming language made
up of a set of recognisable
English words.

Integer A whole number
which may be positive or
negative.

K (of memory) A unit of
memory containing 1024
bytes.

Keyword A command,
statement or function
occupying one byte of
memory and entered by one
or two keystrokes.

Literal string A set of
characters enclosed by
quotation marks and printed
literally on the screen by the
computer.

Load To transfer a program
from back-up storage to the
computer.

Loop Part of a program which

is carried out repeatedly.
Low level language

Programming language
which uses machine code.

Machine code Programming
code which uses the
hexadecimal system to
represent binary numbers.

Nested loops Loops within
loops, so that the instructions
in inner loops are carried out
several times for each pass
round the outer loop.

Null string See Empty string.
Numeric array A set of

numeric variables each
identified by an array name
and subscript number(s).

Numerical variable A
variable with some given
name, to which can be
assigned any desired number
value or numerical
expression.

Pixel Short for picture cell.
The smallest graphics unit
which can be printed on the
screen. In the ZX81 system
the screen is filled by 63
pixels across and 43 pixels
up.

Printer Connected to a
computer to allow it to
produce its output in
permanent form on paper.

Priority The order in which
arithmetical or logical
operations are carried out.

Program A numbered list of
instructions to be carried out
by a computer.

Pseudo-random numbers
These have an apparently
random distribution but each
number is in fact calculated

119

by the computer from the
previous number, and they
are therefore not truly
random.

Random access memory
(RAM)
Computer memory used by
the programmer for storage
of programs, data, and so
on. Each byte of RAM can be
read or altered at will.

Random number A number
drawn from a given set,
where each number in the
set is equally likely to be
drawn and the draw is not
affected by previous events.

Read only memory (ROM)
Permanent computer
memory generally used to
contain BASIC interpreter
programs, operating systems
and so on. Can be read but
not changed.

Relational operators Symbols
like =,<,>, used to
compare numbers,
expressions or strings.

Report code A signal from the
ZX81 which is shown at the
end of a successful run, or
when the program is stopped
by BREAK, STOP or an error.

Save To transfer a program
into back-up storage for
future' use.

Scientific notation In which a
number is displayed in terms
of its mantissa (a number
between 0 and 10) and its
exponent (the power of ten
by which the mantissa is to

be multiplied). The ZX81
uses this system for very
large or very small numbers,
which it would not have
room to display otherwise.

Software Computer programs
and manuals, as opposed to
hardware.

Statement An instruction to
the computer which forms
part of the program.

String array A set of string
variables identified by an
array name and subscript
number(s). In ZX81 BASIC, a
string array contains one
extra final dimension
showing the length of each
member.

String variable A variable,
identified in BASIC by a
name ending in the i sign, to
which may be assigned a
string of characters of any
kind (with minor
exceptions).

Subroutine A part of the
program to which the
computer can be directed
from any part of the main
program. When the
subroutine has been carried
out, the computer is directed
back to the line following its
original departure point.

Syntax error Some error in
the structure of a program
line which prevents it from
being executed, and in the
case of the ZX81, from being
entered into the program.

120

Appendix 3
Programs for the ZX81

1. Random rectangles (1K)
2. Square spiral (1K)
3. Random bar chart (1K)
4. Sales chart (1K)
5. Moving average (1K)
6. Multiples (1K)
7. Finding factors of numbers (1K)
8. Number base conversion (1K)
9. Drawing pictures (1K)

9a. Drawing pictures and storing them
in an array (16K)

10. Cows and bulls (1K)
11. Electronic dice (1K)
12. Reaction timer (1K)
13. Black box (16K)
14. Telephone list (16K)

121

1. Random Rectangles (1K)

The program uses part of the screen (about 2/3) in which to draw an
unlimited series of rectangles of random size and at random
positions.

10 RAND
100 LET A = INT (RND*43)
110 LET B = 1NT (RNDM3)
120 LET C = INT (RND*43)
130 LET D = INT (RND*43)
140 IF A = C THEN LET A = A+1
150 IF B = D THEN LET B= B+1
200 FOR J = A TO C STEP SGN (C —A)
210 PLOT J,B
220 PLOT J,D
230 NEXT J
240 FOR J = B TO D STEP SGN (D-B)
250 PLOT A,J
260 PLOT C,J
270 NEXT J
300 GOTO 100

List of variables

A, B
C, D
J

coordinates of one corner of a rectangle.
coordinates of the opposite corner.
loop control variable.

Notes

Lines 100 to 150

Lines 200 to 230

Lines 240 to 270
Line 300

set the corner coordinates to random 0 to 43, and
make sure that A and C, B and D are not equal,
draw the horizontal sides. A may be larger or
smaller than C, so we use STEP SGN (C-A),
which may be +1 or -1, to make sure that the
FOR/NEXT loop works properly.
draw the vertical sides.
goes back for the next rectangle. We do not need
to include RAND in the loop — in certain
programs this could produce the opposite effect
to randomising.

With 16K of RAM, you can let A and C go up to the full 63 which
PLOT allows. You can easily change this program to draw a definite

122

number of rectangles, or for use as a subroutine to draw a rectangle,
given the coordinates of opposite corners.

2. Square Spiral (1K)

A useless but pretty program which alternately draws and then rubs
out a square spiral in the middle of the screen. Perhaps you could
modify it to draw a rectangular spiral which could be used in a
program title.

10 LET 5=1000
20 LET D = 25
30 LET H = 5
40 LET V-18
50 LET 5 = 3000-5
90 IF D-1 THEN GOTO 20

100 FOR H = H TO H + D
110 GOSUB 5
120 NEXTH
130 LET D-D-1
200 FORV = VTO V+D
210 GOSUB 5
220 NEXT V
230 LET D-D-1
300 FOR H = H TO H-D STEP-1
310 GOSUB 5
320 NEXT H
330 LET D-D-1
400 FOR V = V TO V- D STEP-1
410 GOSUB S
420 NEXT V
430 LET D-D-1
440 GOTO 90

1000 UN PLOT V,H
1010 RETURN
2000 PLOT V,H
2010 RETURN

List of variables

5
D
H, V

flag to determine which subroutine is entered,
width of spiral.
coordinates of starting point.

123

Notes

Line 50 sets the flag S to 2000 or 1000 in alternate
passes of the loop.

Line 90 checks for end of main loop, then goes back to
re-set variables.

Lines 100 to 120 draws the first vertical line.
Line 130 reduces the length of the side by one.
Lines 200 to 230 draws the next horizontal side.
Lines 230 to 430 draw the remaining two sides.
Line 440 goes back to line 90 to draw the next bit of the

spiral.
Lines 1000 to 2000 alternative subroutines to plot or unplot the

spiral.

3. Random Bar Chart (1K)
The program prints a set of fifty vertical bars of random height, and
works out and prints the mean height of the fifty bars.

5 LETT = 0
10 FOR J =0 TO 49
20 LET R=INT (RND*40+1)
30 LETT = T + R
40 FORK = 0TOR
50 PLOT J,K
60 NEXTK
70 NEXT J
80 PAUSE 100
90 FOR J =0 TO 49

100 PLOT J,T/50
110 NEXT J
120 PRINT TAB 5;"MEAN R = ";T/50

List of variables

T
J,K
R

total of the random numbers.
loop control variables.
a random number between 1 and 40.

Notes

Lines 10 to 30 this part of the J loop generates fifty random

124

numbers between 1 and 40 and totals them.
Lines 40 to 60 this K loop draws a vertical bar equal in height to

the current random number R.
Lines 90 to 110 plot a horizontal line as near as possible to the

mean height of the fifty bars.
Line 120 prints the mean of the fifty random numbers.

4. Sales Chart (1K)

A demonstration bar chart showing sales of nuts and bolts during
the past five years.

10 DIM S(5,2)
100 FORJ = 1TO5
110 FORK=1TO2
120 LET S(J,K) = INT (RND*11+10)
130 NEXTK
140 NEXT J
200 PRINT "FIVE YEAR SALES FIGS","FOR NUTS () AND

BOLTS ()",„
250 PRINT "YEAR",,
300 FOR J = 1 TO 5
305 PRINT 1976 + J;" ";
310 FORK=1TO20
320 IF S(J,1)> = K AND S(J,2)> = K THEN PRINT "H";
330 IF S(J,1)> = K AND S(J,2)<K THEN PRINT "H";
340 IF S(J,2)> = K AND S(J,1)< K THEN PRINT "B";
350 NEXTK
360 PRINT
370 PRINT
380 NEXT J
400 PRINT" 0 2 4 6 8 1 1 1 1 1 2" (4 spaces)
410 PRINT" 02 4 680" (14 spaces)

List of variables

8(5,2) 5x2 array of sales figures for two items during five years.
J,K loop control variables.

Notes

Lines 100 to 140 generate a set of random sales figures in the range
10 to 20.

125

Lines 300, and
360 to 380 outside loop, dealing with the five years.

Lines 310 to 350 print a bar on the chart for one year, with tests to
determine which of the three possible graphic
blocks is to be printed.

5. Moving Average (1K)
The input to the program consists of a continuous series of figures,
for instance monthly sales figures. The program takes the N most
recent figures (you specify N), and calculates the mean and
standard deviation.

10 LETK = 0
100 PRINT "HOW MANY NOS.?"
110 INPUT N
120 DIMX(N)
200 LETK=K+1
210 PRINT "NEXT NUMBER?
220 INPUT X(K)
230 PRINT X(K)
240 IF K< NTHEN GOTO 200
250 CLS
300 LETSX = 0
310 LETSS = 0
320 PRINT "LAST ";N;" NUMBERS",,,,
330 FORJ = 1TON
340 LET SX = SX + X(J)
350 LET SS = SS + X(J)**2
360 PRINT " ";X(J)
370 IF J> 1 THEN LETX(J —1) = X(J)
380 NEXT J
400 PRINT„"MEAN = ";SX/N
410 PRINT,,"STD DEV= ";SQR (SS/N-(SX/N)**2),„„
420 GOTO 210

List of variables

K
N
X(N)
sx
ss

subscript for the X(n) figure currently being input,
the number of figures to be averaged at a time,
an array of N numbers.
the sum of the last N numbers.
the sum of the squares of the last N numbers.

126

Notes

Lines 100 to 120

Lines 200 to 240

Lines 330 to 380

Lines 400 to 410

Line 420

inputs the number of figures to be averaged at a
time, and dimensions X(N) accordingly.
INPUT loop for X(N). At the beginning, it is
entered N times, after that only once for each
new calculation.
J loop which takes each of the X(N) numbers in
order, and does these four things with them:
1 Sums them (SX).
2 Sums their squares (SS).
3 Prints them.
4 With the exception of X(1), drops each

number down one place in the array, so that
X(1) is lost, X(2) becomes X(1), X(3) becomes
X(2), and so on.

calculate and print the mean and the standard
deviation of the last N numbers.
goes back for a new X(N).

Obviously this program can be simplified to calculate the mean and
standard deviation of a single set of numbers.

6. Multiples (1K)
The program prints out a 0 to 99 number square, with the multiples
of any given number printed in inverse.

10 PRINT "TYPE ANY NUMBER, 0 TO 99”
20 INPUT N
30 CLS

100 PRINT "THE MULTIPLES OF ";N;" ARE"
110 IF N = 0 THEN LET N = 100
200 FOR J =0 TO 9
210 FORK = 0TO9
220 IF J = 0 THEN PRINT " ";
230 LETM=10*J + K
240 IF INT (M / N)*N = M THEN GOTO 500
250 PRINT M;"";
260 NEXTK
270 PRINT
280 PRINT
290 NEXT J
300 GOTO 10
500 IF J>0 THEN PRINT CHRi (J + 156);
510 PRINT CHRi (K +156);"
520 GOTO 260

127

List of variables

N
J,K
M

chosen number for multiples.
loop control variables.
the current number in the number square.

Notes

Line 110 changes N to 100 if N = 0, to avoid a dividing by
zero error in line 240. 0 is always printed in
inverse since it is a multiple of every other
number.

Line 230 generates the current number in the square from
J and K.

Line 240 tests the current number to see if it is a multiple of
N.

Line 250 prints non-multiples normally.
Lines 500 to 510 print multiples of N in inverse by using the fact

that the code of an inverse number is 156 more
than the actual number.

7. Finding Factors of Numbers (1K)
The first version of this program works by iteration — repeating the
same operations over and over again. It takes a given number,
divides it by two until that 'won't go', then divides by three, etc. If
there are no factors apart from the number itself, it announces
'prime number'.

100 PRINT "FACTORISING NUMBERS"
110 PRINT "WHATS YOUR NUMBER"
120 INPUT N
130 LETNN = N
140 LETF-2
170 PRINT ,,„N;" = 1";
200 IF N / FOINT (N / F) THEN GOTO 300
220 PRINT "X";F;
230 LETN = N/F
250 GOTO 200
300 IF N-1 THEN GOTO 400
330 LETF=F + 1
340 GOTO 200
400 IF F= NN THEN PRINT " PRIME NUMBER"

128

410 PRINT
420 PRINT „"THATS ALL"
430 PRINT AT 21,19;"PRESS NEWLINE"
440 INPUT AS
450 CLS
460 GOTO 100

List of variables

N number to be factorised.
NN dummy variable.
F the factor currently being tried.
AS input empty string to continue with another number N.

Notes

Line 130
Line 140
Line 200

puts N into a dummy variable NN.
sets the factor to 2 to start with,
checks whether N is divisible by F.

Lines 230 to 250 N is divisible by F, so N is divided by F, and then

Line 300
sent back to line 200 to try again.
checks whether N has been reduced to 1, in
which case it is time to stop dividing by F.

Lines 330 to 340 N is not divisible by F, so increase F by 1, then
back to line 200 to try again.

Line 400 if F is the same as NN when all possible factors
have been tried, N must be a prime number.

The program works well but is desperately slow — try putting in
1998 and then 1997. The reason is that we are trying a whole lot of
impossible numbers as factors — for instance we can rule out all the
even numbers after 2. Also, if we have a prime number, there is no
point in trying to divide by any factor bigger than its square root. So,
let's type in some more lines to deal with these two points.

150 LETS = SQRN
160 LETPF = 0
200 IF N / FOINTfN / F) OR NN = 2 THEN GOTO 300
240 LET PF =1
300 IF PF = 0 AND F>S OR N = 1 THEN GOTO 400
310 IF F = 2 THEN LET F= 1
330 LETF = F + 2
400 IF PF = 0 THEN PRINT " X ";NN;" PRIME NUMBER"

129

It's better now, but there's still a long way to go, for instance try
putting in 3994 (which is 2 times a large prime). You will learn a lot
about programming, and also about numbers, if you try to improve
on my effort, using a flowchart.

8. Number Base Conversion (IK)

This program converts numbers from base ten to base two, or vice
versa.

10 LET BS = "BASE 10 NO. = "
20 LET CS= "BASE 2 NO. = "
50 PRINT "NUMBER BASE CONVERSION"
60 PRINT„"CHANGING FROM WHICH BASE?","2 OR 10?"
70 INPUTT
80 CLS
90 IF T = 2 THEN GOTO 600

110 PRINT
120 PRINT„BS;
130 INPUTT
140 PRINT T„CS;
160 FOR J = INT (LN T/LN 256*8) TO 0 STEP -1
170 IF 2**J>T THEN GOTO 210
180 LETT=T-2**J
190 PRINT "1";
200 GOTO 220
210 PRINT "0";
220 NEXT J
230 GOTO 110
600 LETT = 0
610 PRINT
620 PRINT,,CS;
630 INPUT AS
640 PRINT AS
650 FORJ = 0TOLEN AS-1
660 LETT = T + VAL AS (LEN AS-J)*2**J
670 NEXT J
680 PRINT BS;T
690 GOTO 600

List of variables

BS, CS strings used more than once.

130

T 1 choice of base to convert from.
2 base 10 number to be converted.
3 result of converting a base 2 number.

A$ Base 2 number to be converted.

Notes

Line 90 program branches according to choice of base.
Line 160 sets the J loop to start at the correct number of

places for the base 2 number.
Line 170 checks whether the current digit should be 0 or 1.
Lines 180 to 190 if 1, removes the current power of 2 from T, and

prints “1".
Line 210 otherwise, prints ''0''.
Lines 650 to 670 takes the digits of the base 2 number, one by one,

multiplies them by the current power of 2, and
sums them as T.

T has been used for three different variables to save memory — this
¡sallowable becauseT is redefined in all three places. There are other
ways of converting between different number bases. Try to work out
other methods, and different bases — hexadecimal is an important
one.

9. Drawing Pictures (1K and 16K)

The 1K program will allow you to use about 2/3 of the screen to draw
pictures on, with the drawing pixel under control of the four arrows
at 5, 6, 7, 8 on keyboard. If you press D (fordraw), the pixel leaves a
continuous trail wherever it goes. If you press R (for rubout) it leaves
no trail, and rubs out any previous drawing over which it passes.

10 LET X = 0
20 LETY=10
30 LETF$ = "R"

100 IF INKEY$ = "R" THEN LET PANKEYS
110 IF INKEY^="D" THEN LET Fg = INKEYS
190 IF F$ = "R" THEN UNPLOT X,Y
200 IF INKEYi = "5" THEN LET X = X—1
210 IF INKEYtf = "6" THEN LET Y = Y—1
220 IF INKEYi = "7" THEN LET Y = Y +1
230 IF INKEYtf = "8" THEN LET X = X+1
300 IF X>50 THEN LET X = 50
310 IF X<0 THEN LET X = 0

131

320 IF Y>43 THEN LET Y = 43
330 IF Y< 10 THEN LET Y= 10
340 PLOT X,Y
400 GOTO 100

List of variables

X,Y coordinates of the present PLOT/UNPLOT point,
flag for 'draws' or 'rubout'.

Notes

Lines 100 to 400
Lines 100 to 110
Line 190
Lines 200 to 230

Lines 300 to 330

main loop in which all inputs are by INKEYS.
set flag F$ for 'draw' or 'rubout'.
UNPLOT activated only in 'rubout' mode.
PLOT point changed by the four cursor arrow
keys.
keep the PLOT position within a fixed rectangle.

In the 16K program the drawing space has been reduced to a smaller
rectangle, but otherwise the first part of the program works just as
above. When you have completed your drawing, press Z, and the
contents of the drawing rectangle are found by PEEK and put into
an array. Now, by GOTO 2000, the drawing is repeated at any
desired position on the screen. If desired, the array can be saved with
lines 2000 to 2060 for future use.

Type the following lines in addition to those of the 1K program:

40 DIM A(80)
300 IF X>19 THEN LET X= 19
330 IF Y<28 THÇN LET Y = 28
350 IF INKEYS = "Z" THEN GOTO 1000

1000 LET F=PEEK 16396 + 256*PEEK 16397
1020 FOR J = 0 TO 7
1030 FORK=1TO10
1040 LET A(10*J + K) = PEEK (F+K + 33*J)
1050 NEXTK
1060 NEXT J
1070 STOP
2000 PRINT AT 5,10;
2010 FOR J = 0 TO 7
2020 FORK=1TO10
2030 PRINT CHRS A(10*J + K);
2040 NEXTK
2050 PRINT TAB 10;
2060 NEXT J

132

List of variables

F the byte which starts the display file.
J,K loop control variables.
A(80) the set of code numbers representing the contents of the

drawing space.

Notes

Line 350 sets flag to leave the main loop.
Line 1000 finds the start of the display file.
Lines 1020 to 1060 determine the code numbers correspondingto

the contents of the drawing rectangle, and puts
them into the array A(80).

Line 2000, line 2050set the new printing position for the picture.
Lines 2010 to 2060 repeats the contents ofthe drawing rectangle in

the new position.

10. Cows and Bulls (1K)

A simple version ofthe old game, started in Exercise 25.1. The ZX81
generates a four digit number — digits between 1 and 6, and may be
the same — and you have nine tries to guess it. After each guess,
black blobs tell you the number of bulls scored (right digit in the
right position), and grey blobs the number of cows (right digit but
wrong position).

20 DIM N(4)
100 FORJ = 1TO4
110 LET N(J) = INT (RND*6+1)
120 NEXT)
200 FORX=1TO9
210 PRINT "GUESS NO ";X;"?";
220 INPUT GS
230 PRINT GS
300 FOR J -1 TO 4
310 IF GS(J) = STRi N(J) THEN GOSUB 1000
320 NEXT J
330 FOR J = 1 TO 4
340 FORK=1TO4
350 IF GS(K) = STRi N(J) THEN GOSUB 1100
360 NEXTK
370 LET N(J)=ABS NO)
380 NEXT J

133

390 PRINT
400 NEXTX
900 STOP

1000 PRINT
1010 LETGS(J) = ""
1020 GOTO 1120
1100 PRINT "m";
1110 LETG$(K) = ""
1120 LET N(J) = —N(J)
1130 RETURN

List of variables

N(4) four random digits between 1 and 6.
X,J,K loop control variables.
Gi player's current guess at the hidden number.

Notes

Lines 100 to 120
Lines 300 to 320

generate the hidden four digit number.
test the four digits of the current guess for
bulls.

Lines 330 to 380
Line 370

test as above for cows.
restores the digits of the hidden number ready

Lines 1000 to 1130
for the next guess.
subroutine dealing with cow and bull scoring.
It is entered at different points for cow or bull
score, but there is a common ending and
return.

Lines 1010 and
1110
Line 1120

cancel the current digit of the guess, when it
has resulted in a cow or bull score.
cancels the current digit of the hidden number
when it has been the subject of a cow or bull
score.

11. Electronic Dice (1K)

This program generates pseudo-random numbers from 1 to 6, and
converts them into pictures of an actual dice face.

10 RAND
100 FORJ = 1TO9 ____
120 PRINT AT J+ 6,10;"IBB" (9 inverse spaces)
140 NEXT J

134

200 LET D= INT (RND*6+1)
21 (b GOSUB 1000+D* 100
220 INPUT AÎ
230 CLS
240 GOTO 100

1100 PRINT AT 11,14;" " (1 space)
1110 IF D-1 THEN RETURN
1200 PRINT AT 8,11;" " (1 space)
1210 PRINT AT 14,17;" " (1 space)
1220 RETURN
1300 GOTO 1100
1400 PRINT AT 8,1 (1 space, 5 inverse spaces,

1 space)
1410 PRINT AT 14,11;"M" (as 1400)
1420 RETURN
1500 PRINT AT 11,14;" " (1 space)
1510 GOTO 1400
1600 PRINT AT 8,11;" Mi " (1 space, 2 inverse spaces,

1 space, 2 inverse spaces, 1 space)
1610 PRINT AT 14,1 !;"■■" (as 1600)
1620 RETURN

List of variables

J loop control variable.
D pseudo-random number between 1 and 6.
i\i empty string input to throw the dice again.

Notes

Lines 100 to 140
Lines 200 to 210

Lines 1100 to
1620

draw the dice square.
generate a random number D, and direct the
ZX81 to the corresponding subroutine.

six subroutines for printing spots on the dice.
Rather an untidy lot of GOTOs and RETURNS,
but it is meant to minimise the use of RAM.

12. Reaction Timer (IK)

Follow the instructions, and this program will measure your
reaction time and print it on a scale running from 0 to 60. The

135

absolute accuracy is not very high, but it is consistent!

90 PRINT AT 0,0;" HOW FAST DO YOU REACT ?
100 PRINT " PRESS ANY KEY
110 PRINT" WHEN THE SCREEN CLEARS "

(three lines above use inverse spaces and letters)
160 PRINT AT 11,1;
170 FAST
190 PAUSE RND*300 + 200
210 FORA = 0TO62
220 IF INKEYS O ' " THEN GOTO 470
230 PRINT"!"; (graphic block SHIFT 5)
240 PRINT""; (emptystring)
250 NEXT A
460 IF A = 63 THEN PRINT "SLOW " (inverse letters)
470 IF A = 0 THEN PRINT "CHEAT" (inverse letters)
475 SLOW
490 PRINT
500 FOR J =0 TO 12
510 PRINT TAB J*5,J*5;
520 NEXT J
530 PRINT TAB 9;"MILLISECS"
540 PRINT, JAB 5;"25 IS ABOUT AVERAGE"
550 PAUSE 200
560 CLS
570 GOTO 90

List of variables

A,J loop control variables.

Notes

Lines 90 to 110
Lines 170 to 190

Lines 220 to 250

Line 470

Lines 475 to 540

print a bold black heading.
sets FAST mode, then after a random pause, the
screen clears (ZX81 working in fast mode),
timing loop, taking about 1 millisecond per pass.
Line 220 jumps out of the timing loop when any
key is pressed.
checks for cheating — key pressed before start of
timing loop.
back into SLOW mode and print scale.

136

13. Black Box (16K)

Waddingtons produce an excellent board game called Black Box,
and here is a version of this for the ZX81. The board consists of an
eight by eight square, numbered from 1 to 32 round the perimeter.
Four atoms are hidden inside the square, and you have to find them
by shooting laser beams into the box from the various numbered
positions. If you hit an atom, the beam is absorbed (shown by *). If
there is an atom in the line next to your beam, the beam bounces off
it, and eventually emerges from the box as shown by flashing letters.
In the absence of atoms in its vicinity, the beam goes straight
through the box. Warning — the beam can bounce off more than
one atom in its passage through the box. If the beam finds atoms in
the lines on both sides of the beam it is reflected straight back
(shown by H). A reflection is also shown if there is an atom at the
edge of the board next to your entry point.

You can guess where the atoms are, one by one, but be careful —
there is a three shot penalty for a wrong guess. If you give up, the
ZX81 will show you where the atoms were.

The rules are hard to explain, but you'll get the hang of them
quickly. This is an original program — there are other versions
around but I venture to hope that my graphics are betterthan most.

5 RAND
10 DIM A(10,10)
20 LET S = 37
30 LETB$=" " (9 spaces)
40 LET NS = 0
50 LET RG = 0

100 FOR J =0 TO 11 _____
110 PRINT AT J + 5,9;" " (12 inverse spaces)
120 NEXT J
130 PRINT AT 10,10;"BLACK BOX" (inverse letters)
180 PRINT AT 21,20;"PLEASE WAIT"
190 PAUSE 200
200 FAST
205 CLS
210 GOSUB 1000 « « I> r. r>
215 SLOW M
220 GOSUB 1200 L
230 GOSUB 3300 '■ 2k»jTk &
250 PRINT AT 0,22;"WHAT NOW?" JAB 23;" "JAB 23; . q

"""S"" =SHOOT"; TAB 23;" " JAB 23;"""G"" = GUESS»4,«
"JAB 24;" "JAB 24;" "JAB 24;"""E"" = END" 1

270 GOSUB 4200
280 GOSUB 3300

137

285 IF l$ = "G" THEN GOTO 3600
290 IF l$= "S" THEN GOTO 305
295 IF lS= "E" THEN GOTO 1300
300 GOTO 250
305 LETNS = NS+1
310 PRINT AT 10,25;"SHOT";TAB 26;"NO.";NS
420 LETS = S+1
430 LETSS = CHRSS
490 PRINT AT 0,21 ;"WHAT NUMBER";TAB 23;"ARE YOU";

TAB 24;"SHOOTING";TAB 26;"FROM?"
500 INPUT N
510 IF N<9 THEN GOSUB 1400
520 IF N>8 AND N< 17 THEN GOSUB 2300
530 IF N> 16 AND N<25 THEN GOSUB 2000
540 IF N>24 AND N<33 THEN GOSUB 1700
550 IF N>32 THEN GOTO 500
560 GOTO 240
990 STOP

1000 REM**DRAWING THE BOX
1010 PRINT AT 3,0,
1020 FOR J = 1 TO 16
1030 PRINT" " (3 spaces, 16 inverse spaces)
1040 NEXT]
1060 FORJ = 1TO8
1070 PRINT AT 0,2 + 2*J;J
1080 PRINT AT 1 +2*J,21;J+8
1090 PRINT AT 20,4;"2 2 2 2 2 1 1 1"
1095 PRINTAT21,4;"43 2 1 098 7"
1100 PRINT AT 19-2*J,0;J+ 24
1110 NEXT J
1120 FOR J = 6 TO 38 STEP 4
1130 FORK = 6TO38
1140 UNPLOT J,K
1150 UN PLOT KJ
1160 NEXTK
1170 NEXT J
1180 RETURN
1200 REM**PLACING FOUR ATOMS
1210 FORJ = 1TO4
1220 LET X= INT (RND*8 + 2)
1230 LET Y = INT (RND*8 + 2)
1240 IF A(X,Y) = 1 THEN GOTO 1220
1250 LETA(X,Y) = 1
1260 NEXT J
1270 RETURN

138

1300
1310
1320
1330

REM**PRINTING 4 ATOMS
FORX = 2TO9
FORY = 2TO9
IF A(X,Y) = 1 THEN PRINT AT 21 —2*Y,2*X;"*"
(inverse *)

1340
1350
1360
1400
1410
1420
1430
1440
1450
1460
1470
1475
1480

NEXT Y
NEXTX
GOTO 3900
REM**MOVING SOUTH
LETX=N + 1
LET Y=10
LET L = 2
LETC = 2 + 2*(X—1)
PRINT AT L,C;SS
FOR J -1 TO 30
NEXT J
IF A(X,9) = 1 THEN GOTO 3000
IF A(X—1,Y—1) = 1 OR A(X+1,Y—1) = 1 THEN GOTO
2600

1490 IF A(X+1,Y—1) = 1 AND A(X—1 ,Y—1) = 1 THEN GOTO
2600

1500
1510
1520
1530
1540
1550
1560
1570
1580
1700
1710
1720
1730
1740
1750
1760
1770
1775
1780

IF A(X+1,Y-1)-1 THEN GOTO 2390
IF A(X—1, Y—1) == 1 THEN GOTO 1790
IF A(X,Y-1) = 1 THEN GOTO 3000
IF Y = 2 THEN GOTO 1560
LET Y = Y—1
GOTO 1490
LET LI = 19
LETC1 = 2 + 2*(X—1)
GOTO 4000
REM**MOVING EAST
LETX=1
LET Y = N —23
LET L= 19—2*(Y—1)
LETC = 2
PRINT AT L,C;S0
FOR J - 1 TO 30
NEXT J
IF A(2,Y) = 1 THEN GOTO 3000
IF A(X+1 ,Y +1) = 1 OR A(X + 1,Y—1) = 1 THEN GOTO
2600

1790 IF A(X+1 ,Y+1) = 1 AND A(X+1,Y—1) = 1 THEN GOTO
2600

1800
1810

IF A(X+1,Y-1) = 1 THEN GOTO 2090
IF A(X+1 ,Y +1) = 1 THEN GOTO 1490

139

182Ö IF A(X+1,Y) = 1 THEN GOTO 3000
1830 IF X-9 THEN GOTO 1860
1840 LETX = X+1
1850 GOTO 1790
1860 LET LI =19—2*(Y—1)
1870 LETC1=19
1880 GOTO 4000
2000 REM**MOVING NORTH
2010 LETX = 26—N
2020 LETY=1
2030 LETL=19
2040 LETC = 2 + 2*(X—1)
2050 PRINT AT L,C;SS
2060 FOR J = 1 TO 30
2070 NEXT J
2075 IF A(X,2) = 1 THEN GOTO 3000
2080 IF A(X—1,Y+1) = 1 OR A(X+1,Y+1) = 1 THEN GOTO

2600
2090 IF A(X+1,Y+1) = 1 AND A(X-1,Y+1) = 1 THEN GOTO

2600
2100 IF A(X+1,Y+1) = 1 THEN GOTO 2390
2110 IF A(X-1,Y+1) = 1 THEN GOTO 1790
2120 IF A(X,Y+1) = 1 THEN GOTO 3000
2130 IF Y = 9 THEN GOTO 2160
2140 LETY = Y+1
2150 GOTO 2090
2160 LETL1=2
2170 LET C1 =2 + 2*(X—1)
2180 GOTO 4000
2300 REM**MOVING WEST
2310 LETX=10
2320 LETY=18-N
2330 LET L=19—2*(Y—1)
2340 LETC=19
2350 PRINT AT L,C;SS
2360 FOR J = 1 TO 30
2370 NEXT]
2375 IF A(9,Y) = 1 THEN GOTO 3000
2380 IF A(X-1,Y+1) = 1 OR A(X-1,Y—1) = 1 THEN GOTO

2600
2390 IF A(X—1,Y+1) = 1 AND A(X-1,Y-1) = 1 THEN GOTO

2600
2400 IF A(X—1,Y+1) = 1 THEN GOTO 1490
2410 IF A(X—1,Y—1) = 1 THEN GOTO 2090
2420 IF A(X-1,Y) = 1 THEN GOTO 3000

140

2430 IF X = 2 THEN GOTO 2460
2440 LETX = X—1
2450 GOTO 2390
2460 LET LI = 19—2*(Y—1)
2470 LETC1 =2
2480 GOTO 4000
2600 REM**REFLECTION
2605 FOR J l TO 10
2610 PRINT AT L,C;" " (1 space)
2620 FOR K-1 TO 2
2630 NEXT K
2640 PRINT AT L,C;"B" (1 GRAPHICS SHIFT A)
2650 FOR K-1 TO 3
2660 NEXT K
2670 NEXT J
2680 RETURN
3000 REM**ABSORPTION
3010 FOR J-1 TO 10
3020 PRINT AT L,C;" " (1 space)
3030 FOR K-1 TO 2
3040 NEXT K
3050 PRINT AT L,C;"*"
3060 FOR K-1 TO 3
3070 NEXT K
3080 NEXT J
3090 RETURN
3300 REM**CLEARING TOP RIGHT SCREEN
3310 PRINT AT 0,21;" " (2 spaces)
3320 FORJ-0TO21
3330 PRINT AT J,23;B$
3340 NEXT J
3350 RETURN
3600 REM**GUESSING AN ATOM
3610 PRINT AT 0,23;"WHERE IS"; TAB 23;"THE ATOM? '
3620 PAUSE 200
3630 PRINT AT 3,24;"SQUARES";TAB 24;"ALONG? "
3635 GOSUB 4200
3640 LET X- VAL \ì
3645 IF X>8 THEN GOTO 3635
3650 PRINT X
3660 PAUSE 50
3670 PRINT AT 6,25;"SQUARES";TAB 27;"UP?
3675 GOSUB 4200
3680 LET Y-VAL iS
3685 IF Y>8 THEN GOTO 3675

141

3690 PRINT Y
3700 IF A(X+1,Y+1) = 1 THEN GOTO 3800
3710 PRINT AT 21 —2*(Y+1),2*(X+1);"0" (inverse 0)
3720 PRINT AT 9,25;"NO ATOM";TAB 26;"THERE"
3730 PAUSE 200
3740 PRINT AT 12,24;"PENALTY";TAB 25;"3 SHOTS”
3750 LETNS = NS + 3
3760 PAUSE 200
3770 GOTO 240
3800 PRINT AT 21 —2*(Y+1),2*(X+1);"*" (inverse*)
3810 PRINT AT 10,23;"WELL DONE”;TAB 24;”GOT ONE”
3820 PAUSE 300
3830 LETRG=RG+1
3840 IF RG = 4 THEN GOTO 4300
3850 GOTO 240
3900 REASSIGNING OFF
3920 PRINT AT 20,24;"PRESS";TAB 24;"NEWLINE”
3925 INPUT Ci
3930 CLS
3940 PRINT AT 5,0;"l HOPE YOU ENJOYED THE GAME”,,

TAB 10;"PLAY AGAIN SOME TIME”
3950 STOP
4000 REM**FLASHING LETTERS
4010 FORJ = 1TO10
4020 PRINT AT L,C;" " (1 space)
4030 PRINT AT L1,C1;" " (1 space)
4060 PRINT AT L,C;SS
4070 PRINT AT L1,C1;SS
4080 FORK=1TO3
4090 NEXTK
4100 NEXT J
4110 RETURN
4200 REM*GETTING AN INKEYS
4210 IF INKEYgO" " THEN GOTO 4210
4220 IF INKEYS= "" THEN GOTO 4220
4230 LET lS = INKEYS
4240 RETURN
4300 REM* »CONGRATS
4310 GOSUB 3300
4320 PRINT AT 0,24;"YOU GOT";TAB 24;”THE LOT”
4330 PAUSE 100
4340 PRINT AT 3,24;"WITH THE";TAB 25;NS;"TH”;TAB 26;

"SHOT”
4350 PAUSE 300
4360 PRINT AT 8,26;"PLAY”;TAB 25;"AGAIN?";TAB 25;" ";

142

TAB 25;"Y/N ?"
4370 INPUT Ci
4380 IF C#= "Y" THEN RUN
4390 IF Ci = "N" THEN GOTO 3930
4400 GOTO 4370

List of variables

A(10,10) the 64 squares in the black box, plus an invisible line of
squares all round the perimeter.

Bi a string of 9 spaces.
NS the number of the current shot.
RG the number of right guesses so far.
J,K loop control variables.
IS the current value of INKEYS.
Si the current character indicating the beam in/beam out

positions.
S the code of this current character.
X,Y grid coordinates.
L,C line and column for printing character showing beam in.
L1,C1 line and column for printing character showing beam

out.
Ci input string to make program continue.

List of subroutines

draws the grid with surrounding numbers.
1200 places the four atoms in the grid at random.
1300 prints the four atoms on the grid when player gives up.
1400 deals with beams moving south.
1700 deals with beams moving east.
2000 deals with beams moving north.
2300 deals with beams moving west.
2600 prints characters to show a reflection.
3000 prints characters to show an absorption.
3300 clears the top right part of the screen.
3600 asks player to guess the position of one atom, and

checks whether guess is correct.
3900 end of game, signing off.
4000 flashes characters to show where beam has entered and

left the box.
4200 puts the current value for INKEY# into I#.
4300 congratulations — player has guessed all four atoms.

143

Notes

The vital core of the program is made up of the four 'moving'
subroutines which are all very similar. These notes apply to the
'moving east' subroutine:

the exit point of the beam, and off to 4000 to
flash the characters at entry and exit points.

Lines 1710 to 1720 set the coordinates for the starting point of the
beam.

Lines 1730 to 1740 set the print position for the character showing
the entry point of the beam.

Line 1775 checks for an edge absorption.
Line 1780 checks for an edge reflection.
Line 1790 checks for an internal reflection.
Line 1800 checks for an atom on the line below the entry

point, which deflects the beam north.
Line 1810 checks for an atom on the line above the entry

point, which deflects the beam south.
Line 1820 checks for an atom in the next square ahead,

which gives an absorption.
Line 1830 checks whether the beam has gone right

through the box.
Lines 1840 to 1850 if the beam is still in the box, increases the X

coordinate by one, and back to check
everything once more.

Lines 1860 to 1880 set the print position for the character showing

14. Telephone List (16K)

This is a domestic example of a database program. It is capable of
holding a lot of numbered items of data in an array, in this case
names and phone numbers up to a total of 20 characters per item.
The program must never be executed by the command RUN — this
would lose all the data you have put in. Always execute the program
with GOTO 10. You will then be offered the choice of listing the
items, putting a new item in, finding one item, or rubbing out an
item. In each of the last three operations, the ZX81 is using only the
first three characters of the items, so that 'Find Norman' would also
turn up Norton, North, Norden, etc.

You can alter the program to deal with any other information you
want to store. You can change the number of items or their length,
being limited to about 650 items of 20 characters in 16K of RAM.

10 DIM N$(100,20)

144

20
30
100
110

LET N$(100) = "END"
LETE$ = " " (20 spaces)
CLS
PRINT "PHONE NUMBER LIST",,,,,"ORDERS
PLEASE?",,„"LIST ALL THE NAMES-L","PUT NEW
NAME/NUMBER IN = N","FIND A NUMBER-F"„
"RUB OUT A NAME/NUMBER- R"

120
130
140
150
160
170
200
205
210
215
220
230
240
250
260
270
300
310
320
330
400
410
420
430
440
450
460
470
500
510
520
530
540
550
570
580
600
610

INPUT ZS
IF ZS="N" THEN GOTO 500
IF ZS = "F" THEN GOTO 200
IF ZS-"R" THEN GOTO 700
IF ZS - "L" THEN GOTO 400
GOTO 120
CLS
PRINT„„"NAME PLEASE?"
INPUT ZS
IF LEN Z$<3 THEN GOTO 210
LET F-0
LETX-1
CLS
IF NS(X, TO 3)<>ZS(TO 3) THEN GOTO 300
LET F-1
PRINT„NS(X)
LET X = X+1
IF NS(X, TO 3)0 "END" THEN GOTO 250
IF F = 0 THEN PRINT ZS;" NOT FOUND"
GOTO 1000
CLS
LETX-0
LETX-X+1
SCROLL
PRINT NS(X)
IF N$(X, TO 3)<>"END" THEN GOTO 420
SCROLL
GOTO 1000
CLS
LETX-1
IF NS(X, TO 3) = "END" THEN GOTO 570
IF NS(X) = ESTHEN GOTO 600
LETX-X+1
GOTO 520
PRINT„"SORRY - NO MORE ROOM"
GOTO 1000
CLS
PRINT "NEW NAME/NUMBER?"

145

620
630
700
710
720
730
735
740
745
750
760

INPUT NS(X)
GOTO 100
CLS
PRINT “RUB OUT WHICH NAME ?"
INPUT ZS
LETX=1
IF NS(X, TO 3) = “END” THEN GOTO 850
IF NÍ(X, TO 3)0ZS(TO 3) THEN GOTO 900
CLS
PRINT NS(X)
PRINT “PRESS R TO RUB OUT",,,"OR NEWLINE FOR
NEXT ";ZS(TO 3)

770
780
790
800
810
850
860

INPUT RS
IF RSO' R" THEN GOTO 900
PRINT,,N$(X);" RUBBED OUT"
LET NS(X) = ES
GOTO 1000
CLS
PRINT„“NO MORE ";ZS(TO 3);“ NAMES IN THE
LIST"

870
900
910
1000
1010
1020

GOTO 1000
LETX = X+1
GOTO 735
PRINT AT 21,13;"PRESS N/L FOR MORE"
INPUT ZS
GOTO 100

List of variables

N$(100,20) array of 100 strings of 20 characters each.
Z$,R$ input string variables.
F flag to indicate whether or not name found.
X current subscript number.

Notes

Lines 100 to 170

Lines 200 to 330

Lines 400 to 470

print a menu of four possible choices, with
program branching in four different directions,
routine for finding a name/number. Since only
the first three letters have to match, this can turn
up more than one name.
produce scrolled list of all the 100 names in
subscript order.

146

Lines 500 to 630 search for the first empty member of the array,
and then allows the user to insert a new name.

Lines 700 to 910 routine for rubbing out an existing name. The
user types in the name he wishes to rub out, and
the program produces all the names
corresponding (first three letters) one by one,
with the option of deleting or going on to the
next.

147

Appendix 4
Sample Answers to
Exercises

There are plenty of ways of writing a computer program. Do note
that these are sample answers, and that they only use computer
instructions learnt up to the chapter concerned .Your own solutions
may be different but just as correct.

Exercise 6.1. Line changing

Type 15, NEWLINE,20,NEWLINE, and then:

10 PRINT “THREE LINES GONE, ONE LEFT"

Exercise 6.2. Your address

NEW deletes the old program.

1000 PRINT “MR. JOHN SMITH"
2000 PRINT " 23 HANLEY ROAD"
3000 PRINT" STAFFORD"
4000 PRINT " SD23 6MX"

Exercise 7.1. Expressions with brackets

(1) Stage 1 7-5 = 2 30/ 12 = 2.5
Stage 2 2*2.5 = 5
Stage 3 5**3 = 125 (answer)

(2) Stage 1 6*8 = 48 23-11=12
Stage 2 48-12 = 36 5 + 7=12
Stage 3 36/ 12 = 3
Stage 4 3**2 = 9 (answer)

148

Exercise 8.1. Money changing

10 LETR=1.9
20 LETP = 75
30 LET D = 250
40 PRINT P*R
50 PRINT "US DOLLARS FOR "
60 PRINT P
70 PRINT "£"

100 PRINT
110 PRINT
120 PRINT D/R
130 PRINT "£ NEEDED TO GET"
140 PRINT D
150 PRINT "US DOLLARS"

Exercise 8.2. Parachuting

10 LETT=10
20 LET A = 9.8
30 LET H = 3000—A*T**2 / 2
40 PRINT "TIME= "
50 PRINT T
60 PRINT
70 PRINT "HEIGHT= "
80 PRINT H

The height is 2510 m after 10 seconds. If you put various times into
line 10 you will find that after 22 seconds free fall the height is 628 m,
that's the time to pull the ripcord.

Exercise 9.1. Circles

10 LETR = 5
20 LETD = 2*R
30 LET C = 3.14*D
40 LET A= R**2*3.14
50 PRINT" VITAL STATISTICS OF A CIRCLE"
60 PRINT
70 PRINT "IF THE RADIUS IS ";R;" CM"
80 PRINT
90 PRINT "DIAM = ";D;" CM","CIRCUMF= ";C;" CM"

100 PRINT TAB 8;"AREA= ";A;" SQ CM"

149

Exercise 11.1. Decimal part

10 LETN = 17.59
20 PRINT "NUMBER";TAB 10;"INT";TAB 20;"DECIMAL"
30 PRINT
40 PRINT N;TAB 10;INT N;TAB 20;N-INT N

Exercise 11.2. More rounding

10 LET N = 2.75
20 PRINT INT (N*10 + .5) / 10

Exercise 12.1. Building society interest

20 LET C = 500
30 LET Y= 1982

100 PRINT Y;" CAPITAL+INTEREST = £";C
110 PRINT
120 LETY = Y+1
130 LETC = C*1.08
140 IF Y< 1990 THEN GOTO 100

Change line 100 as follows to round off to the nearest p.

100 PRINT Y;" CAPITAL+ INTEREST = £";INT (C*100+.5) /
100

Exercise 12.2. When are the leap years?

10 LETY=1982
100 PRINT “YEAR"
110 PRINT Y;
120 IF Y I 4= INT (Y / 4) THEN PRINT" LEAP YEAR";
130 LETY = Y+1
140 PRINT
150 IF Y<2000 THEN GOTO 110

Exercise 14.1. Percentages

10 PRINT "YOUR MARK?";
20 INPUT M
30 PRINT M,,,,"MAX POSS MARK?"

150

40 INPUT MAX
50 CLS
60 PRINT M;" OUT OF ";MAX;"=";M/MAX*100;" PER

CENT'',,,
70 GOTO 10

Exercise 14.2. Petrol consumption

10 PRINT "HOW MANY MILES?";
20 INPUT M
30 PRINT M
40 PRINT "GALLONS USED?"
50 INPUT G
60 CLS
70 PRINT G;" GALL FOR ";M;" MILES= ";M / G;"

MPG"
80 PRINT
90 GOTO 10

Exercise 16.1. Table of square roots

10 PRINT "NUMBER","SQUARE ROOT"
20 PRINT

100 FORN = 0TO16
110 PRINT N,SQRN
120 NEXTN

Exercise 16.2. Multiples of four

10 PRINT "MULTIPLES OF 4 UPTO 100"
20 FOR J = 0 TO 100 STEP 4
30 PRINT TAB 2*J;J;
40 NEXT]

Exercise 17.1. Multiplication square

10 FORJ = 1TO7
20 FORK=1TO7
30 PRINT TAB 4*K;J*K;
40 NEXT K
50 PRINT,,,,
60 NEXT J

151

Exercise 17.2. Rectangle

10 FORJ = 1TO5
20 FORK=1TO19
30 PRINT
40 NEXTK
50 PRINT
60 NEXT J

For a title, change line 10 to:

10 FORJ = 1TO4
and add:

60 IF J = 2 THEN PRINT " THIS IS A RECTANGLE” (inverse
letters)

Exercise 18.1. Form filling

10 PRINT "YOUR SURNAME PLEASE"
20 INPUT SS
30 PRINT,,"NOW YOUR FIRST NAME"
40 INPUT FS
50 PRINT „ "AGE IN YEARS PLEASE"
60 INPUT AS
70 PRINT„"AND WHERE DO YOU LIVE?"
80 INPUT TS
90 CLS

100 PRINT "THANK YOU VERY MUCH ";FS," ";SS
110 PRINT„"YOU ARE ";AS;" YEARS OLD"
120 PRINT " AND YOU LIVE IN ";TS

Exercise 19.1. Choosing numbers

10 PRINT "TYPE A WHOLE NUMBER FROM 1 TO 99"
20 PRINT" THEN PRESS NEWLINE"
30 INPUT N
40 IF N<1 THEN GOTO 100
50 IF N>99 THEN GOTO 100
60 IF NO1NT N THEN GOTO 200
70 GOTO 300

100 PRINT "NUMBER FROM 1 TO 99 PLEASE"
110 GOTO 30
200 PRINT "WHOLE NUMBERS PLEASE"

152

210 GOTO 30
300 CLS
310 PRINT "YOUR NUMBER IS ";N
320 PRINT,,,,“ITS SQUARE IS ";N*N
330 PRINT,,,,,,“NEXT NUMBER?"
340 GOTO 30

Note: At present you cannot guard against the user putting in letters
— these give a 2/30 error. To cover this you need to know about the
function VAL which comes later.

Exercise 20.1. Roulette

100 LET S= INT (RND*37)
110 IF S<10 THEN PRINT““;
120 PRINTS;“ "; (2 spaces)
130 GOTO 100

Note: As written here the program includes a single zero, which I
believe is the usual thing.

Exercise 20.2. Random rectangles

100 LET N = INT (RNDM5 + 1)
200 FOR J = 1 TO INT (RND*15+1)
210 FORK=1 N
220 PRINT'D"; (one GRAPHICS SHIFT A)
230 NEXTK
240 PRINT
250 NEXT J
300 PAUSE 50
310 CLS
320 GOTO 100

Exercise 21.1. Water tank volumes

10 LETV = 0
110 PRINT,,,,“WHAT SHAPE IS IT?"
120 PRINT,/'CYLINDER - TYPE CYL"
130 PRINT" OR CUBE-TYPE CUBE"
140 INPUT AS
150 CLS
160 IF A$= "CYL" THEN GOSUB 1000
170 IF A$= "CUBE" THEN GOSUB 2000

153

180 IF VO0 THEN GOTO 300
190 PRINT "DONT KNOW ";AS;" SHAPE"
200 GOTO 140
300 PRINT "VOL OF ";Ag;" = ";V;" CUBIC CM"
900 STOP

1000 REM**VOL OF CYL
1010 PRINT "HEIGHT IN CM?";
1020 INPUT H
1030 PRINT H,,,,"DIAM IN CM?
1040 INPUT D
1050 PRINT D
1060 LET V= PI*(D/2)**2*H
1070 RETURN
2000 REM*VOL OF CUBE
2010 PRINT "EDGE LENGTH IN CM? ";
2020 INPUT E
2030 PRINT E
2040 LETV=E**3
2050 RETURN

Note: In line 180 we are using V as a flag to make the ZX81 by-pass
lines 190 and 200 if the volume has been calculated.

Exercise 22.1. Number guessing

20 PRINT "WHATS MY CODE (10 TO 99)","YOU HAVE 8
GUESSES",,,

100 LET C= INT (RND*90+10)
130 FOR J = 1 TO 8
140 PRINT "GUESS "J;"?";
150 LETGS=""
200 FORK=1TO2
210 IF INKEYÍO "" THEN GOTO 210
220 IF INKEY$ = " " THEN GOTO 220
230 PRINT INKEYS;
240 LET GS = GS+INKEYS
250 NEXTK
310 LETG = VALG$
320 IF G = C THEN GOTO 500
330 IF G>C THEN GOTO 370
340 PRINT " IS TOO LOW"
350 GOTO 400
370 PRINT " IS TOO HIGH"
400 NEXT J

154

450 PRINT,,“IT WAS ";C
460 STOP
500 PRINT " IS RIGHT"
510 PRINT “GUESSED IT IN ";J" GOES”

Note: In line 150 we have to reset G$ to " ”, the empty string, in
order to get rid of the previous guess.

Exercise 23.1. Vertical lines

FORK = 0TO43
110 PLOT 0,K
120 PLOT 63, K
130 NEXTK

Note: The program will not complete the verticals because of
shortage of memory — you are trying to use too much screen. You
must reduce the height from 43 to 37 to get a complete rectangle.

Exercise 23.2. Visiting card

10 FORJ = 12TO50
20 FOR K = 16 TO 30
30 PLOT J,K
40 NEXTK
50 NEXT J

100 PRINT AT 8,8;"JOHN JONES ESQ.,"JAB 9;"21
OXFORD ROAD"; TAB 10;"CHISWICK";TAB
12;"W.4." (all inverse letters)

Note: In line 100, PRINT AT 8,8 sets the print position on the first
line, and then TAB is used to skip on to succeeding lines.

Exercise 23.3. "On we go" subroutine

100 PRINT "PAUSING NOW"
110 GOSUB 1000
120 PRINT AT 5,0;"GOING ON AGAIN"
900 STOP

1000 REM**ONWEGO
1010 PRINT AT 21,19;"PRESS NEWLINE"
1020 INPUT AS
1030 PRINT AT 21,19;" " (13 spaces)
1040 RETURN

155

Exercise 24.1. Ants

10 LETL = 5
20 LETC = 0
30 PRINT "WHATS AN ANT?"
40 PAUSE 300

100 PRINT AT 0,0;"TYPE A WORD
(32 letters plus spaces)

110 INPUTWS
120 IF LEN W$<3 THEN GOTO 200
130 IFWg(1 TO 3) = "ANT" THEN GOTO 300
140 IF WS (LEN Wg-2 TO LEN WS) = "ANT" THEN GOTO

300
200 PRINT AT 0,0;W?;" IS NOT AN ANT"
210 GOTO 40
300 PRINT AT 3,5;"LIST OF ANTS"
310 PRINT AT L,C;W$
320 LETL=L + SGNC
330 LETC=15—C
340 GOTO 100

Notes: Line 120 rejects words of less than three letters.
Lines 130 and 140 accept words with ANT at the beginning
or the end of the word.
Line 320 increases the PRINT line number by 1 on
alternate loops.
Line 330 sets the PRINT column to 0 and 15 alternately.

Exercise 25.1. Simple cows and bulls

10 RAND
20 DIM N(4)
30 LETB = 0

100 FORJ = 1TO4
110 LET N(J) = INT (RND*6+1)
120 NEXT J
200 PRINT "GUESS MY NUMBER",/'FOUR DIGITS ALL

BETWEEN 1 AND 6"
210 INPUT AS
220 CLS
230 PRINT "YOUR GUESS WAS ";AS
300 FORJ = 1TO4
310 IF N(J) = VAL AS(J) THEN LET B=B + 1
320 NEXT J
400 PRINT,„"YOU SCORED B;" BULLS"

156

Note: A program for the complete game is listed in Appendix 3, but
maybe you would like to try your own hand at one first.

Exercise 26.1. Test results

10 DIM CJ(6,6)
20 DIM M(6)

100 LET CS(1) = "SIMON"
110 LET CS(2) = "MARINA"
120 LET CS(3) = "WILLIAM"
130 LET CS(4) = "EMILY"
140 LET CS(5) = "JAMES"
150 LET C$(6) = "JOANNE"
200 PRINT "NAME OF TEST?";
210 INPUTTS
220 PRINT T$,"MAX MARK?";
230 INPUT M
240 PRINT M
300 FORJ = 1TO6
310 PRINT C$(J),"MARK? ";
320 INPUT M(J)
330 PRINT M(J)
340 NEXT J
400 CLS
410 PRINT T$;" TEST",,,,
420 PRINT "NAME","PER CENT",,,
430 FOR J = 1 TO 6
440 PRINT CS(J),M(J)*100 / M
450 NEXT J

Note: Here we have two parallel single-dimension arrays, one for
the names and one for the marks, in order to save memory. In a 16K
program for a full class, one might use a two-dimension string array,
input the marks as strings, and use VAL to turn them into numbers.

Exercise 26.2. One-armed bandit

10 RAND
20 DIM WS(6,6)
30 DIM N(3)

100 LET WS(1) = " BELL"
110 LET W$(2) = "LEMON"
120 LET W$(3) = "CROWN"

157

130 LET WS(4) = "ANCHOR"
140 LET WS(5) = "CHERRY"
150 LET WS(6) = "APPLE"
200 FORJ = 1TO3
210 LET N(J) = INT (RND*6+1)
220 PRINT AT 10,(J —1)*12;WS(N(J))
230 NEXT J
240 IF N(1)ON(2) THEN GOTO 300
250 IF N(2)ON(3) THEN GOTO 300
260 PRINT AT 18,15;"JACKPOT"
270 STOP
300 INPUT AS
310 GOTO 200

Note: Here we have a single-dimension array of six strings, and one
of three random numbers. In line 220 we are using a member of the
number array as the subscript to the string array variable. Lines
240-250 are not very elegant, we need logical AND which comes in
the next chapter.

Exercise 27.1. Water tank Mk.2

Note: Water will only run out of the tank if tap AS is open, as well as
either tap BS or tap CS.

Exercise 28.1. Flasher

GOSUB1000
900 STOP

1000 REM**FLASHING WINNER

158

1010 FORJ = 1TO10
1020 PRINT AT 21,15;" " (6 spaces)
1030 FORK=1TO10
1040 NEXTK
1050 PRINT AT 21,15;" WINNER " (inverse letters)
1060 FORK=1TO20
1070 NEXTK
1080 NEXT)
1090 RETURN

Exercise 28.2. Rubber ball

10 LETV = 0
20 LETVV=1

100 FORJ = 20TO40
110 PLOT J,1
120 NEXT J
140 FORX = 0TO19
150 PRINT AT V,15;" "
160 LETV = V + VV
170 PRINT AT V,15;"0"
180 IF V = X OR V = 20 THEN LET VV=-VV
190 IF VO20 THEN GOTO 150
200 NEXTX

Exercise 28.3. Lunar module

100 FORL = 0TO18
110 PRINT AT L,15;" ";TAB 14;" A ";TAB

14;"<E]>";TAB 14;"l I"
120 FORK = 0TOL*2
130 NEXTK
140 NEXTL

Note: All the strings making up the module are three characters
long, and the 'S' in the middle should be inverse. The module is an
unshamed steal from 'Lunar Landing', an excellent game — one of a
series produced in cassette form by Sinclair ZX Software.

Lines 120 and 130 provide a steadily increasing pause in the main
loop, to make the landing reasonably soft.

159

Appendix 5
The 16K RAM Pack

The main part of this book has been written for users of the Sinclair
ZX81 (and generally for the ZX80 with BASIC in 8K ROM) with the
standard 1K of RAM or user memory in which to put program, data,
display file and so on. As your programming technique improves,
you will soon find that you need more RAM than this. Sinclair
Research Ltd. supply a neat expansion box which plugs into the
edge connector at the back of the ZX81/ZX80 to provide a total of
16K of RAM. At a little more than two thirds of the cost of the
assembled ZX81, it represents good value by today's standards.

The expanded ZX81 can be used to write longer programs (such
as Program 13 in Appendix 3). It can also be used to store more data,
remembering that all data is saved on tape with your program, and
can be loaded and used again later (Programs 9 and 14 in
Appendix 3).

The 16K RAM Pack is no problem to use — simply plug it in before
you switch on (never insert it or remove it while the ZX81 is
switched on). Remember, even short programs saved with the 16K
RAM Pack in place take up more tape space — it's best to plug in the
Pack again when you want to load them later.

160

The 16K RAM pack being inserted into the ZX81

161

Index
* Titles of exercises included in Chapters 6 to 28
* * Titles of programs in Appendix 3

ABS, 33, 115
ACS, 33, 115
Address, 118
AND, 96, 116
Ants*, 85
ARCCOS, 33, 115
ARCSIN, 33, 115
ARCTAN, 33, 115
Array members, slicing, 93
Array

multi-dimension, 88
naming, 92
of numbers, 86, 119
of strings, 91, 120

ASN, 33, 115
AT, see PRINT AT
ATN, 33, 115

Back-up storage, 5, 45, 118
BASIC, 7, 118
Binary maths, 104, 118
Black box**, 137
Bouncing balls, 99
Brackets, 20, 98
Branching at random, 68
Branching in a program, 63, 73
BREAK, 36, 112
Buffer storage, 59
Building society interest*, 38
Byte, 5, 104, 118

Checking programs, 109
Choosing numbers*, 64
Character, 82, 118
CHRS, 82, 116

Circles*, 28
Circles, drawing, 101
CLEAR, 48, 112, 113
CLS, 43, 113
CODE, 83, 116
Command, 12, 18, 111,118
Comparing numbers, 37
Comparing strings, 57
Conditional statement, 8, 36, 118
CONT,43, 112
COPY, 45, 80, 115
COS, 33, 115
Cows and bulls**, 133

simple*, 89
Crash, 118
Crashproofing a program, 63
Current line pointer, 29
Cursor

E, w
E], io
KJ, 9, 30, 37
E, 9, 30
E, 13

Debugging programs, 108, 118
Decimal part*, 34
Decision diamond, 40
Dice throwing, 67
DIM, 87, 91, 113
Drawing lines, 78
Drawing pictures**, 131
Dummy variable, 86

EDIT, 11, 30, 111
Electronic dice**, 134

163

Empty string, 56, 119
EXP, 32, 115
Expression, 18, 32

LPRINT, 58, 80, 115
Lunar module*, 103

FAST, 60, 112, 113
Finding factors of numbers**, 128
Flasher*, 103
Flashing words, 99
Flowcharts, 40, 51, 61, 62, 97, 119
FOR. . . TO . . . NEXT, 50, 53, 113
Form filling*, 58
Function, 10, 32, 111, 119

Machine code, 119
Maths operators, 19, 116
Money changing*, 24
Moving average**, 126
Moving graphics, 99, 102
Multiples*, 52
Multiples**, 127
Multiplication square*, 54

GOSUB, 70, 114
GOTO, 36, 38, 48, 112, 114
Graphics, 10, 54, 77, 99, 111

blocks, 10, 54, 111

Hardware, 2, 9, 119
High level language, 4, 119

INKEYtf, 73, 116
INPUT, 42, 48, 56, 63, 114
INPUT loops, 42, 56
INT, 33, 115
Inverse characters, 10, 84

Nested loops, 43, 53, 119
NEW, 12, 112
NEWLINE, 12, 15, 111,112
NEXT, see FOR
NOT, 98, 116, 117
Numbers, 10, 18
Number base conversion**, 13C
Number guessing*, 75
Numeric array, 86, 119
Numeric variable, 22, 119

On we go subroutine*, 80
One armed bandit*, 93
OR, 96, 116

Joining string variables, 57

Keyboard, 9
Keywords, 9, 119

LEN, 83, 116
LET, 22, 56, 112, 114
Letters, 10
Line number, 13, 16
Line space, 15
LIST, 29, 111
Literal string, 13, 119
LLIST, 45, 115
LN, 32, 115
LOAD, 47, 112, 119
Loading named programs, 47
Logical priorities, 97

statements, 96
values, 98

Loop, 8, 36, 43, 50, 78, 119
Loop control variable, 50
Low level language, 4, 119

Parachuting*, 25
PAUSE, 64, 114
PEEK, 105, 115
Percentage*, 44
Permanent loops, 43
Petrol consumption*, 44
PI, 33, 115
Pixel, 77, 119
PLOT, 77, 114
POKE, 106, 112, 114
PRINT, 13, 15, 22, 112, 114
PRINT AT, 79, 99, 114
Printer, 5, 45, 119
Priority, 19, 32, 97, 119
Processing block, 40
Program lines

changing, 16
deleting, 16
listing, 16
renumbering, 30

Pseudo-random numbers, 66, 119
Punctuation, 26, 117

RAM, 5, 105, 120

164

economising in, 109
expansion, 16K, 105, 160

RAND, 66, 115
Random access memory, 5, 105, 120
Random bar chart**, 124
Random numbers, 66, 120
Random rectangles**, 122
Random rectangle*, 67
Reaction timer**, 135
Read only memory, 5, 105, 120
Rectangle*, 55
Relational operators, 37, 116, 120
REM, 16, 115
Renumbering, 30
Report code, 13, 108, 120
RETURN, 70, 115
RND, 66, 115
ROM, 5, 105, 120
Roulette*, 67
Rounding off numbers, 34

automatic by ZX81, 35
Rubber ball*, 103
Rubbing out parts of screen, 80
RUBOUT, 15, 112
RUN, 13, 112, 115

Sales chart**, 125
SAVE, 46, 113
Saving data, 47
Saving programs, 46, 120
Scientific notation, 20, 120
SCROLL, 36, 115
SGN, 33, 115
SHIFT, 10, 112
Simple cows and bulls*, 89
SIN, 33, 116
Slicing strings, 83, 93
SLOW, 60, 113, 115
Software, 2, 120
SQR, 32, 116
Square root table*, 52
Square spiral**, 123
Statement, 12, 113, 120
STEP, 52, 113
STOP, 38, 43, 70, 113, 115
String array, 91
String variable, 56, 120
STRS, 75, 116
Subroutines, 70, 120

when to use, 72
Syntax errors, 13, 108, 120

TAB, 27, 102, 114
TAN, 33, 116
Tape recorder, 46
Telephone list**, 144
Test results*, 93
THEN, see IF
TO, for string slicing, 83, 93, 114
Tortoise race, 102
TV set, 9

UNPLOT, 77, 115
Uppercase character, 10
USR, 116

VAL, 75, 116
Variable

naming, 28
numeric, 22
string, 56, 120

Vertical lines*, 78
Visiting card*, 80

Water tank Mk. 2, 98
Water tank volumes*, 72
When are the leap years?*, 39

ZX printer, 45, 58
graphics with, 80

ZX80, 60

<£ 30, 111
<><>29,111

, 26, 117
; 26,117
n 33,115
- 37,116
< 37,116
> 37,117

>- 37, 117
<- 37, 117
<> 37, 117

165

the pleasure of choosing
Book Tokens can be bought
and exchanged at most
bookshops.

166

L ★ Written for the beginner
•k Easy, understandable

writing style
★ Glossary of

micro terms

Z,b00*s

Illustrated Paperback 160 pages
216 x138mm 0 408 00580 7

In
writing

this book
Alec Wood has

set out to dispel
the mystique that

surrounds the
microprocessor. He tells

you what a microprocessor
is, what binary arithmetic

is, and how the microprocessor
uses it to carry out arithmetical

operations. If you have ever been
confused by microprocessors, this book

is for you.

Practical Microprocessor Systems
Ian R. Sinclair

* Describes the microprocessor A book for those wishing to get to
as part of a system grips with the practical

. aspects of microprocessors.
* Covers practical aspects For the student, technician or

home enthusiast.
Illustrated Paperback 144 pages
216 x138 mm 0 408 00496 7

167

ZX81 Basic Book

If you have a ZX81, or are thinking of buying one, this book will tell
you all you need to know to get the best from it.

ZX81 Basic Book covers the basic 1K version, the additional facilities
offered by the 16 K expansion RAM, and how to use the ZX Printer.
There are 14 original programs for you to run on the machine (for 1K
and 16K versions), and forthose confused by computer jargon (and
who isn’t?) there is a glossary of technical terms.
Robin Norman assumes no initial computing know-how, and
his undemanding writing style is a perfect beginner’s introduction-as
readers of his previous book, Learning BASIC with your Sinclair
ZX80, will know.

ISBN 0 408 01178 5

Newnes Microcomputer Books

o
3
05

5 co
o
B

N

https://acpc.me/

CPC

[FRA] Ce document a été préservé numériquement à des fins éducatives et d'études, et non commerciales.
[ENG] This document has been digitally preserved for educational and study purposes, not for commercial purposes.
[ESP] Este documento se ha conservado digitalmente con fines educativos y de estudio, no con fines comerciales.

	ZX 81 BASIC BOOK
	Preface
	Contents
	1 - What do Computers Do?
	2 - Talking to Computers
	3 - Programming in BASIC
	4 - The Hardware
	5 - Your First Program
	6 - Tidy up Your Programs!
	7 - Sums? No Problem!
	8 - Vital Variables
	9 - A Little Punctuation Works Wonders
	10 - Anyone can Make a Mistake!
	11 - Strictly Functional
	12 - Magic Roundabout
	13 - Flowcharts
	14 - Putting in Data
	15 - Saving Programs and Data
	16 - Round and Round — Just Ten Times
	17 - Loops Within Loops
	18 - What a Friendly Machine!
	19 - Change Speed, Stop and Pause
	20 - A Chancy Business
	21 - Gone Out, Bizzy, Back Soon
	22 - Speeding up the Input
	23 - Son of Graphics
	24 - Playing with Strings
	25 - In Glorious Array
	26 - Arrays of Strings
	27 - Very Logical
	28 - Graphics Ride Again!
	29 - What a Memory!
	30 - Debugging Your Programs
	Appendix 1 - ZX81 BASIC in 8K ROM
	Appendix 2 - Glossary of Terms
	Appendix 3 - Programs for the ZX81
	Appendix 4 - Sample Answers to Exercises
	Appendix 5 - The 16K RAM Pack

	● Raw HQ scan : Maxime CROIZER for ACME | Cleaning/Cover restoration/Layout/OCR/Coca light : ACME – https://acpc.me ● 2020-10-01

